Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

AB Calculus Cheat Sheet for Exam, Cheat Sheet of Calculus

Curve sketching and analysis, velocity, acceleration, mean value theorem, continuous functions and values of trigonometric functions

Typology: Cheat Sheet

2020/2021

Uploaded on 04/26/2021

alpana
alpana 🇺🇸

4.9

(13)

249 documents

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
AB CALCULUS (0 to 100)
Curve sketching and analysis
y = f(x) must be continuous at each:
critical point:
dy
dx
= 0 or undefined
local minimum:
dy
dx
goes (,0,+) or (,und,+) or
2
2
dy
dx
>0
local maximum:
dy
dx
goes (+,0,) or (+,und,) or
2
2
dy
dx
<0
point of inflection: concavity changes
2
2
dy
dx
goes from (+,0,), (,0,+),
Differentiation Rules
Chain Rule
( ) '( )
d du dy dy du
f u f u
dx dx dx du
Rx
Od

Product Rule
() ''
d dv du
uv u v OR u v v
dx dx dx u
Quotient Rule
22
''
du dv
dx dx
vu vu uv
O
du
dv
xv vR

101
2
1
( ) [ ( ) 2 ( ) ...
2 ( ) ( )]
bba
n
a
nn
f x dx f x f x
f x f x

Basic Derivatives
1nn
dx nx
dx
sin cos '
du u u
dx 
cos sin '
du u u
dx
2
tan sec '
du u u
dx 
2
cot csc '
du u u
dx
sec sec tan '
du u u u
dx 
csc csc cot '
du u u u
dx
1
ln
d du
u
dx u dx
uu
d du
ee
dx dx
“PLUS A CONSTANT”
1
( ) ( )
b
a
f c f x dx
ba
The Fundamental Theorem of
Calculus
( ) ( ) ( )
where '( ) ( )
b
af x dx F b F a
F x f x

Corollary to FunThmCalculus
()
()
( ( )) '( ) ( ( ))
()
'( )
bx
ax
f b x b x f a x
f t dt
d
d
ax
x
2
()
xb
xa
V R x dx
22
( ) ( )
b
a
V R x r x dx

()
b
a
V Area x dx to x axis
Intermediate Value Theorem
If the function f(x) is continuous on [a, b],
and k is a number between f(a) and f(b),
then there exists at least one number x= c
in the open interval (a, b) such that
()f c k
.
More Derivatives
1
2
1
sin 1
d du
u
dx dx
u
1
2
1
cos 1'
du
du
xu
1
2
1
tan '
1
du
du
xu
1
2
1
cot 1'
du
du
xu
1
2
1
sec 1'
duu
dx uu
1
2
1
csc 1'
duu
dx uu
l'n
uu
da a a
dx u
1
lo n'gl
a
duuu
dx a
Mean Value Theorem
If the function f(x) is continuous on [a, b],
AND the first derivative exists on the
interval (a, b), then there is at least one
number x = c in (a, b) such that
( ) ( )
'( ) f b f a
fc ba
.
* Rolle’s Theorem: f ’(c) = 0.
d
dt
d
dt
v
f
o
t
tvdt
final time
initial time
distance = v dt
s
t
final position initial position
total time
v
t
final velocity initial velocity
total time
Area Formulas
Trapezoid
)(
2
121 bbhA
Circle
2
Ar
Square
2
As
Rectangle
A lw
Triangle
1
2
A bh
OR at endpoints
(+,und,), or (,und,+)
pf2

Partial preview of the text

Download AB Calculus Cheat Sheet for Exam and more Cheat Sheet Calculus in PDF only on Docsity!

AB CALCULUS (0 to 100)

Curve sketching and analysis

y = f(x) must be continuous at each:

critical point :

dy

dx

= 0 or undefined

local minimum :

dy

dx

goes (–,0,+) or (–,und,+) or

2

2

d y

dx

local maximum :

dy

dx

goes (+,0,–) or (+,und,–) or

2

2

d y

dx

point of inflection: concavity changes

2

2

d y

dx

goes from (+,0,–), (–,0,+),

Differentiation Rules

Chain Rule

 ( )^ '( )

d du dy dy du f u f u dx dx dx du

R

x

O

d

Product Rule

d dv du uv u v OR u v v dx dx dx

   u

Quotient Rule

2 2

du dv dx dx v u (^) v u uv O

d u

d x v v v

R

^ 

Numerical Methods for Integration

Trapezoidal Rule

1 2 0 1

1

( ) [ ( ) 2 ( ) ...

2 ( ) ( )]

b b a a n

n n

f x dx f x f x

f x f x

RRAM (Right-hand Rect. Approx.)

LRAM (Left-hand Rect. Approx)

MRAM (Midpt. Rect. Approx)

Theorem of the Mean Value

i.e. AVERAGE VALUE

Basic Derivatives

d (^) n n 1 x nx dx

 

 sin  cos '

d u u u dx

 cos  sin '

d u u u dx

2 tan sec '

d u u u dx

2 cot csc '

d u u u dx

 sec  sec tan '

d u u u u dx

 csc  csc cot '

d u u u u dx

ln

d du u dx u dx

d (^) u udu e e dx dx

“PLUS A CONSTANT”

If the function f(x) is continuous on [a, b]

and the first derivative exists on the

interval (a, b), then there exists a number

x = c on (a, b) such that

b

a

f c f x dx b a

This value f(c) is the “average value” of

the function on the interval [a, b].

The Fundamental Theorem of

Calculus

where '( ) ( )

b

a

f x dx F b F a

F x f x

Corollary to FunThmCalculus

( )

( )

b x

a x

f b x b x f a x

f t dt

d

d

a x

x

Solids of Revolution and friends

Disk Method

2 ( )

x b

x a

V  R x dx

(about x-axis)

Washer Method

 ^ ^ 

2 2 ( ) ( )

b

a

V   R x r x dx

(about x-axis)

Cross Sections

b

a

V  Area x dx  to x axis

Intermediate Value Theorem

If the function f(x) is continuous on [a, b],

and k is a number between f(a) and f(b),

then there exists at least one number x= c

in the open interval (a, b) such that

f c( ) k^.

More Derivatives

1

2

sin

1

d du u dx (^) u dx

 

1

2

cos

1

d u d

u x (^) u

1 2

tan ' 1

d u d

u x u

   

1 2

cot 1

d u d

u x u

1

2

sec

1

d u u dx (^) u u

  

1

2

csc

1

d u u dx (^) u u

 ^

  l^ n '

d (^) u u a a a dx

 u

lo n

g ' l

a

d u u

u dx a

Mean Value Theorem

If the function f(x) is continuous on [a, b],

AND the first derivative exists on the

interval (a, b), then there is at least one

number x = c in (a, b) such that

( ) ( ) '( )

f b f a f c b a

  • Rolle’s Theorem: f ’(c) = 0.

Position, Velocity, and Acceleration

velocity =

d

dt

(position)

acceleration =

d

dt

(velocity)

speed = v

displacement =

f

o

t

t

v dt

final time

initial time

distance = v dt

average velocity =

s

t

final position initial position

total time

average acceleration =

v

t

final velocity initial velocity

total time

Area Formulas

Trapezoid ( )

2

1

1 2 A  hb b

Circle

2

A  r

Square

2 A s

Rectangle A lw

Triangle

1

2

A  bh

OR at endpoints

(+,und,–), or (–,und,+)

Asymptotes

Example:

x a y x b

Vertical Asymptote : x = b

  • goes with infinite limit as x  b

Horizontal Asymptote : y = 1

  • goes with limits at infinity (3 rules)

Related Rates

Variables changing with respect to

TIME! Use implicit diff.

2

2 2

V r h

dV dh dr r h r dt dt dt

Integration

Area, Sum, Accumulation  Integrate

Integral of Rate = Total or Net Change

Differentiation

Slope, Instantaneous Rate of Change 

Differentiate

Derivative = Slope of Tangent Line

Differentiability

No cusps, corners, vertical tangents, or

discontinuity

Continuous Function at a point

lim lim x a x a    

lim ( ) x a

f a 

Values of Trigonometric

Functions for Common Angles

Θ sin θ cos θ tan θ

 1

 2

 3

Inverse Trig Functions:

arc sin (0) = sin

- 1

arc cos( ½ ) = cos

- 1

arc tan (1) = tan

- 1

Basic Trig Integrals

2

2

  1. sec tan sec
    1. cos sin
  2. sec tan
  3. sin cos
  4. csc cot
  5. csc cot csc
  6. tan ln cos
  7. cot ln sin
  8. sec ln sec tan
  9. csc ln csc cot

x x dx x C

x dx x C

x dx x C

x dx x C

x dx x C

x x dx x C

x dx x C

x dx x C

x dx x x C

x dx x x C

 

 

 

  

  

  

  

 

  

   

         

More Integrals

1

2 2

2 2

2 2

3. ln

ln

4. arcsin

6. arctan

7. sec

n n

u u

u u

du u C

u

u du C n

n

du

u C

u

a du a C

a

e du e C

du u

C

a

a u

du u

C

a u a a

du u

arc C

a a

u u a

       

FTC I (another version)

b

a

f x dx  f b f a 

FTC II (easy version)

x

a

y f t dt

y f x

Definition of a Derivative

“h is the same as delta x”

  0

( ) ( ) lim ' h

f x h f x f x  h

  

Separation of Variables

kt

dy ky dt

y Ce

Slope Fields

Graph of tiny slopes of a given

differential equation, representing all

solutions to that differential equation.

Trig Identities

Pythagorean

2 2

sin x  cos x 1

2 2

2 2

1 tan sec

cot 1 csc

x x

x x

Reciprocal

sec cos sec 1

cos

x or x x

x

csc sin csc 1

sin

x or x x

x

Odd-Even

sin(–x) = – sin x (odd)

cos(–x) = cos x (even)

Optimization / Extreme Value Thm.

Implicit Differentiation

2 2

2 2 ' '

2 ' ' 2

'(2 1) 2

2 ' 2 1

x y y

yy y

yy y

y y

y y

 

 

  

  

  

1 Write function in terms of one variable.

2 Find the first derivative and set it equal to zero.

3 Check the endpoints if necessary.

nenecessarynecessarynecessary.

Optimum means either

maximum (highest value)

or minimum (lowest value).