Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Ad Hoc: Mobile clients connect directly without an intermediate access point. Operating sy, Schemes and Mind Maps of Computer Science

Ad Hoc: Mobile clients connect directly without an intermediate access point. Operating systems such as Windows have made this peer-to-peer network easy to set up. Infrastructure networks contain special nodes called access points (APs). APs are connected via existing networks. APs can interact with wireless nodes and existing wired network.

Typology: Schemes and Mind Maps

2023/2024

Uploaded on 11/29/2023

shreeya-ganji
shreeya-ganji 🇮🇳

1 document

1 / 11

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Nutl
hypotthests
Aemate
fhpethest
pt
06.
a)
Evaluat
o
denoBer
the obabiliy
ejecton o
hut
-P(thart
0
POX-)-bC,
15,
o)
(jeton
tthct
p
06
Samplr
ypothens
of
commHtng
PCOsxSS
AoP=O.6
null
hy
ptthes's
ohe n
it's
tue)
Tutortal
no-
4
tohen
H 's
toue
the
numbex
of
college
araduaes
in
the
's belueen
S)
06 Ct-06
)
type-T
or,
whteh
o
and
5
or
betoeen
19
and
15
or
(3<
Xsls
)
O0338+
O2|
Csorn
Stattbteat
table )
2bC
I5,
06)
t bl2;
5,
o-s)
Þ9729
O609
b
(*;15,
06)
pf3
pf4
pf5
pf8
pf9
pfa

Partial preview of the text

Download Ad Hoc: Mobile clients connect directly without an intermediate access point. Operating sy and more Schemes and Mind Maps Computer Science in PDF only on Docsity!

Nutl hypotthests

Aemate fhpethest^ pt^ 06.

a) Evaluat

ejectono^ denoBer o the^ obabiliyhut

-P(thart

POX-)-bC, 15, o) (jeton

tthct p 06

Samplr

ypothens

of commHtng

PCOsxSS

AoP=O.

null hy^ ptthes's^ ohe^ n^

it's tue)

Tutortal no- 4

tohen H 's^ toue

the numbex of college^ araduaes^

in the 's belueen

S) 06 Ct-06)

type-T or, whteh

o and^5 or^

betoeen 19 and^15

or (3<^ Xsls^ )

O0338+ O2|

Csorn Stattbteat^ table )

2bC I5,^ 06)^ t^ bl2;^

5, o-s)

Þ
O

b (*;15, 06)

foa aHrattve p 05

denoes he poobab'ity

nbn- ectba of

The pnbabity

fos p- 0,

cbG,n,p))

of toyittrg^ a^ type-^ I^ ror,^ tohtth^ th the nul^ hypathestr^ ben^ is^ -btse.

of commha

12

rof oood Orough

bl6,15,^ os^ )

+ BC^ (o;^ (5,0:5)

Y-

of hon- ertton

he null hypothest

B

B; 15, o5)

6

ond pr t,

n the^ sonmple^ be-teeen^

6 and^ t

O 0'

b(#;(5,^ 0s)^ +^ b(8;^ 5,^ 0-5)^4

bC9, (5,o-5)

4 bCM;^ I5,^ 0-5)^ t^ b(12;(5,^

ttho num bey

nocluafes inhesample

6(1;5, 02)

2 bCa;^ 15,^ 07)

o Fox p- 0'5,

The pobabtlty^ of^ committog^ ype-I

of colleg

00034

when i^ s^ fal^ )

of co'lee^ qyaduate^ ,^ ohen

Alothe pobabiltey

qe ehtnely^ hiah.^ So^ th^ ts not

Cfiom satstal fabte)

t betoteen^6 Rle^

rtohen p^ 4)

h(a:l5, 0-4) Cfom stattttal^ table^ )

IS O06,^ wh^ rch^ t

of cemmitn9 ftypeI good poteduar

436 Variance Decomposition. We (^) start (^) with (^) the (^) following (^) equation: If (^) we (^) square both (^) sides ve (^) obtain

The (^) last (^) term (^) on the (^) nght-hand side is

We therefore obtain

which equates to

Ni-= (; - )-(Þ - ).

The Relation between R and r.

sOReidual

= bSxy

i=

= Syy +bs-26s.y

= Syy - bSr = Syy

SORegression Syy- SOResidual

  • (â +by) -) -ba - )

(Sy)? Sxx (S.)?

i=

Sxx

i=

Appendix C: (^) Technical (^) Appendix

i=

i=

i=

Appendix C Technical Appendix

We thercfore obtain R (^) SORegression Syy

(S? S Sy TheLeast Squares Estimators areUnbiased.

E(Ò) =E(X'X)'X'y) Giventhat Xin the model is assumed to be fixed (i.e., non-stochastic and not following any distribution), we obtain

E(Ô) =(Xx)x'E().

Since E(e)^0 it^ follows^ that^ Ey^ XØ^ and^ therefore E(Ø) =(X'X)X'xø-8.

How to^ Obtain^ the^ Variance^ of^ the^ Least^ Squares^ Estimator.^ With^ the^ same

arguments as^ above^ (i.e^ X^ is^ fixed^ and^ non-stochastic)^ and^ applying^ the^ rule Var(bX)) =Var(X)^ from^ the^ scalar^ case^ to^ matrices^ we^ obtain:

Var() =Var(N'N)'X'y)^ =(X'X)^ x'Var(y)^ X(N'x)-=o'(N

437

Maximum Likelihood^ Estimation^ in^ the^ Linear^ Model.^ The^ lincar^ model follows anormal distribution: y XØ+e^ N(XO,^ o').

ihood function^ is^ given^ by

Therefore, the^ likelihood^ function^ of^ yalso^ follows^ a^

nomal distribution:

A1}Pe) of cenHol charl I) Aribue dala:^ ohen^ dat a^ is^ in

  1. Numericu 0ata

hen data^ ig^ in^ the^ Form^ o^ an ttibte ot^ count^ form,^ hen^

we wi USe^ con^ Ho)^ CharH^ Ike

P chart

U chart

  • char

when dat^ a^ is^ in^

the

a Continous^ +ype then^ we^

oi we ConHo) charH ike

X- bar chart

R boar charL

bar chart

Form al

x bur chart

UcL 3061S

*= 3. o

LCL 3-615S

Q12) Gven

No

mean: 95

We

S

To chenle

The rneon

toheheY proess

neove

LCL 36

ten e, the

Upors (onto tnit

o catculafe

35- 3x

UCE u t 36

contol

3o

  • 3543x

o

39025

liraits

tus tn conhol

does nof

(ouerc (onrol tihnit CLCL)

(Uct)

the thi one have eans

af thid^ subqroup^ s^ belouw^ LCL^

ohrkk

fo be conto!

) find aetocovelrton fureion RO) EO)

c) (^) Nandom eleonogh prores is sttorory. Because,

Given

at) £x))^ t^ tndeperdent^ of^4 O Rt,to) ROo, t,-) R(T)

3 RO)^ :F))^ < Rordom hene t

\anables Sone fred

tcle qaph S

tutll be

set of posible

State

Sippeose

t (6,2.... m

sate of we say thart^ susm^ is^ In^ sterte Systern of

a Stguenoe^ ot^ ondem^ Yashbles

Cfinite secord momenf) proess

T

ie P( Xht|=

of Sone Systensusern

atsfy all aböve^ rondfon is widesense,

Ratnn tocoy

Values of thesheg^ ndom^ anah^ les

to iteoee^ Xn^ as^ being

Mos kov Chain is^ a if each me system ts

tn next stat.

hof aining

tocoy

ts hetofal

Xhci, Xh-

Cdefniton

pobability.

in-t,

n' & therfore

fox cohich

0sjs N

at timt^ n'^ ifi

y uen ce cf onom

in slafey and

he sysm

Xo io

of tonsètion ProbabiliHg

Psobabi fty of vaining tornoroo t

pobabily oy P

o hen it was hot

anihg

twhen wasn of aining foday

)

fio

Poo

tomosrow

tomorgowohenit ias

ainirq oday)

too nstston matnx

PLrainng

eP (not uhing

fo PCX: pXo- O)

P

P

ormorCrainihg