Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Antenna Theory and Random Signals, Exercises of Electrical Engineering

Comprehensive idea about radiation pattern and random signals can be obtained.

Typology: Exercises

2016/2017

Uploaded on 02/19/2017

gmajumda
gmajumda 🇺🇸

1 document

1 / 7

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Antenna Fundamentals
( )
( )
( )
[ ]
[ ]
[ ] [ ]
ˆ
ˆ
D D
R 4
- 1 - 1 e e
P
P
16.
ˆ
ˆ
4
D - 1 e A 15.
4
D
A 14.
1 - SWR
1 SWR
ˆ
and
ˆ
1
ˆ
1
SWR 13
Z Z
Z
- Z
ˆ
12.
- 1 e e 11.
D e
P
U
4
e
G 10.
P e P 9.
P
, U 4
G
8.
A
4
D and
P
U 4
D
7.
P
, U
4
D 6.
ˆ
ˆ
PLF 5.
d d sin )
,( U P 4.
E E
2
1
W
r
,
U3.
E
E
2
1
a
ˆ
W 2.
E
a
ˆ
E
a
ˆ
- ) , (r, H
ˆ
E a
ˆ
E
a
ˆ
)
,
(r,
E
1.
2
rt0r0t
2
2
r
2
tcdrcdt
t
r
2
rt
2
0
2
cdem
2
0em
0L
0L
2
cdt
0t
rad
max
t0
int rad
in
g
2em
0
rad
max
0
rad
g
2
rt
0
2
0
rad
2
2
av
2
2
2
r
av
ρρ
π
λ
ΓΓ=
ρρ
π
λ
Γ=
π
λ
=
+
=Γ
Γ
Γ+
=
+
=Γ
Γ=
=
π
=
=
φθπ
=
λ
π
=
π
=
φθπ
=
ρρ=
φθθφθ
=
+
η
==
φθ
+
η
=
η
+
η
=φθ
+=φ
θ
ππ
φθ
φθ
θ
φ
φ
θ
φφθθ
pf3
pf4
pf5

Partial preview of the text

Download Antenna Theory and Random Signals and more Exercises Electrical Engineering in PDF only on Docsity!

Antenna Fundamentals

[ ]

[ ]

[ ] [ ] D D ˆ ˆ

4 R

e e 1 - 1 - P

P

  1. A e 1 - D

14. A D

SWR- 1

SWR 1

and ˆ 1 ˆ

13 SWR

Z Z

Z -Z

  1. e e 1 -

e D P

4 U

  1. G e
  2. P e P

P

4 U ,

8. G

4 A

and D P

4 U

7. D

P

4 U ,

6.D

5.PLF ˆ ˆ

4.P U( , )sin d d

E E

3.U , r W

E E

2.W aˆ

E

E

Hˆ(r, , ) -aˆ

1.E(r, , ) aˆ E aˆ E

2 0t 0r t r

2 2 r

2 cdt cdr t t

r

2 t r

2

0

2 em cd

2

em 0

L 0

L 0

2 t cd

t 0 rad

max 0 t

rad t in

in

g

2

em 0 rad

max 0

rad

g

2 t r

0

2

0

rad

2 2 av

2

2 2 av r

ρ • ρ  

π

λ = Γ Γ

 ρ • ρ 

π

λ = Γ

π

λ

 π

π θφ

λ

π

π

π θφ

= ρ • ρ

=∫ ∫ θφ θ θ φ

η

θφ = =

η

η

η

θφ =

θφ = +

ππ

θ φ

θ φ

θ φ

φ θ

θ θ φ φ

Array Theory

[ ( ) ]

[ (^ ) ]

kd sin cos and kd sin sin

sin

N

sin

N

sin

M

sin

M

  1. PlanarArray:AF

kdcos 2

u

AF a cos 2 n- 1 u

AF a cos 2 n- 1 u

5.NonuniformLinearArray:

(Hansen Woodyardendfirearray)

2 Nkd D 1.

(ordinaryendfirearray)

2 Nkd D

(broadsidearray)

Nkd

  1. D

N

  1. Hansen Woodyardendfirearray: - kd

aˆ aˆ sin cos aˆ sin sin aˆ cos

aˆ -aˆ sin aˆ cos

  1. aˆ aˆ cos aˆ sin

where kdcos and cos aˆ aˆ

sin

N

sin

N

1.AF

x x x y y y

y

y

x

x

M 1

n 1

2M 1 n

M

n 1

2M n

0

0

0

r x y z

x y

x y

N array r

Ψ = θ φ +β Ψ = θ φ + β

= θ

π

π

π

 π β= +

= θ φ+ θ φ + θ

= φ + φ

= φ+ φ

Ψ= γ+β γ= •

=

=

φ

ρ

Antenna Synthesis

1. Schelkunoff’s Polynomial

z,z ,z ,........arenull locations

where z e and Ψ kdcosθ β

AF a e a z-z z-z .............. z-z

1 2 3

j Ψ

N

n 1

n 1 2 N- 1

j Ψ n

= (^) ∑ =

2. Fourier Transform Method

SF( ) I (z)e dz

SF e d 2

I(z )

(i) LineSource

j z a

  • 2

2

    • jz a d

2

1

θ = ′ ′

ξ ξ π

ξ′

′ξ

ζ

ζ

AF( ) a e

whereΨ kdcosθ β

AF e d 2

a

ii) LinearArray

M

m-M

jm m

jm m d

2

1

=

ψ

ψ

ζ

ζ

θ =

Ψ ψ π

3. Woodward Lawson Method

( cos -cos )

Nkd

cos -cos 2

Nkd sin

TotalarrayfactorAF f b

cos -cos 2

Nkd

cos -cos 2

Nkd sin

Foreachsamplef b

(ii)LinearArray

cos -cos 2

k

cos -cos 2

k sin

TotalspacefactorSF s b

cos -cos 2

k

cos -cos 2

k sin

Foreachsamples b

(i)LineSource:

b AF forlineararray

b SF forlinesource

Sampleexcitationco-efficientforeachsample:

NumberofsamplesN 2 M 1

Samplelocation cos m m 0, 1, 2,...............

Sampleseparation

m

m M

m -M

m

M

m -M

m

m

m

m m

m

m M

m -M

m

M

m -M

m

m

m

m m

m d m

m d m

  • 1 m

θ θ

θ θ

θ = ∑ = ∑

θ θ

θ θ

θ θ

θ θ

θ = ∑ = ∑

θ θ

θ θ

= θ=θ

= θ=θ

θ = ∆ = ± ±

λ ∆=

= =

Horns

4 .Foroptimumdirectivity a 3 and b 2

a

and p (a a) 4

b

3.p (b b)

  1. cos and cos

where 0 x - 2

x

  1. x
  2. H-sectoralhorn:Phasevariation k x

where 0 y - 2

y

  1. y
  2. E-sectoralhorn:Phasevariation k y

1 2 1 1

2

1

h H 1

2

1

e E 1

1 e e 2 h h

h 2 2

2

e 1 1

2

= λρ = λ ρ

 ρ = − 

 ρ = −

ρ =ρ ψ ρ =ρ ψ

⇒ ≤δ ′ ≤ ρ ρ ρ

δ ′ =

= δ ′

⇒ ≤δ ′ ≤ ρ ρ ρ

δ ′ =

= δ ′

Some Standard Integrals

3 c x dx c

  1. cos

c 2

c 2

sin

c 2

c x e dx c

  1. cos

c 2

c 2

sin

  1. e dx c
  1. sin d

c/ 2

  • c/ 2

4

2 2

2 jx

c/ 2

  • c/ 2

2

jx

c/ 2

  • c/ 2

0

3

^ =

 π ∫

 α

 α

 α π

π  = 

 π ∫

 α

 α

∫ θ θ =

α

α

π

Corner Reflector

  1. aˆρ =aˆx cosφ+ aˆy sinφ