



Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Comprehensive idea about radiation pattern and random signals can be obtained.
Typology: Exercises
1 / 7
This page cannot be seen from the preview
Don't miss anything!
Antenna Fundamentals
e e 1 - 1 - P
and ˆ 1 ˆ
e D P
and D P
4.P U( , )sin d d
3.U , r W
2.W aˆ
aˆ
Hˆ(r, , ) -aˆ
1.E(r, , ) aˆ E aˆ E
2 0t 0r t r
2 2 r
2 cdt cdr t t
r
2 t r
2
0
2 em cd
2
em 0
L 0
L 0
2 t cd
t 0 rad
max 0 t
rad t in
in
g
2
em 0 rad
max 0
rad
g
2 t r
0
2
0
rad
2 2 av
2
2 2 av r
ρ • ρ
π
λ = Γ Γ
ρ • ρ
π
λ = Γ
π
λ
= ρ • ρ
=∫ ∫ θφ θ θ φ
η
θφ = =
η
η
η
θφ =
θφ = +
ππ
θ φ
θ φ
θ φ
φ θ
θ θ φ φ
Array Theory
kd sin cos and kd sin sin
sin
sin
sin
sin
kdcos 2
u
AF a cos 2 n- 1 u
AF a cos 2 n- 1 u
5.NonuniformLinearArray:
(Hansen Woodyardendfirearray)
2 Nkd D 1.
(ordinaryendfirearray)
2 Nkd D
(broadsidearray)
Nkd
aˆ aˆ sin cos aˆ sin sin aˆ cos
aˆ -aˆ sin aˆ cos
where kdcos and cos aˆ aˆ
sin
sin
x x x y y y
y
y
x
x
M 1
n 1
2M 1 n
M
n 1
2M n
0
0
0
r x y z
x y
x y
N array r
Ψ = θ φ +β Ψ = θ φ + β
= θ
π
π
π
π β= +
= θ φ+ θ φ + θ
= φ + φ
= φ+ φ
Ψ= γ+β γ= •
∑
∑
=
=
φ
ρ
Antenna Synthesis
1. Schelkunoff’s Polynomial
z,z ,z ,........arenull locations
where z e and Ψ kdcosθ β
AF a e a z-z z-z .............. z-z
1 2 3
j Ψ
N
n 1
n 1 2 N- 1
j Ψ n
2. Fourier Transform Method
SF e d 2
I(z )
(i) LineSource
j z a
2
2
1
θ = ′ ′
ξ ξ π
ξ′
′
′
′ξ
ζ
ζ
∫
∫
whereΨ kdcosθ β
AF e d 2
a
ii) LinearArray
M
m-M
jm m
jm m d
2
1
∑
∫
=
ψ
ψ
ζ
ζ
θ =
Ψ ψ π
3. Woodward Lawson Method
Nkd
cos -cos 2
Nkd sin
TotalarrayfactorAF f b
cos -cos 2
Nkd
cos -cos 2
Nkd sin
Foreachsamplef b
(ii)LinearArray
cos -cos 2
k
cos -cos 2
k sin
TotalspacefactorSF s b
cos -cos 2
k
cos -cos 2
k sin
Foreachsamples b
(i)LineSource:
b AF forlineararray
b SF forlinesource
Sampleexcitationco-efficientforeachsample:
NumberofsamplesN 2 M 1
Samplelocation cos m m 0, 1, 2,...............
Sampleseparation
m
m M
m -M
m
M
m -M
m
m
m
m m
m
m M
m -M
m
M
m -M
m
m
m
m m
m d m
m d m
θ θ
θ θ
θ = ∑ = ∑
θ θ
θ θ
θ θ
θ θ
θ = ∑ = ∑
θ θ
θ θ
= θ=θ
= θ=θ
θ = ∆ = ± ±
λ ∆=
= =
Horns
4 .Foroptimumdirectivity a 3 and b 2
a
and p (a a) 4
b
3.p (b b)
where 0 x - 2
x
where 0 y - 2
y
1 2 1 1
2
1
h H 1
2
1
e E 1
1 e e 2 h h
h 2 2
2
e 1 1
2
= λρ = λ ρ
ρ = −
ρ = −
ρ =ρ ψ ρ =ρ ψ
⇒ ≤δ ′ ≤ ρ ρ ρ
δ ′ =
= δ ′
⇒ ≤δ ′ ≤ ρ ρ ρ
δ ′ =
= δ ′
Some Standard Integrals
3 c x dx c
c 2
c 2
sin
c 2
c x e dx c
c 2
c 2
sin
c/ 2
4
2 2
2 jx
c/ 2
2
jx
c/ 2
0
3
π ∫
α
α
α π
π =
π ∫
α
α
∫ θ θ =
α
α
π
Corner Reflector