Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

AP Statistics Formula sheet 2017, Cheat Sheet of Statistics

AP statistics formula equations formula cards, z-table standards normal probability and t-distribution critical values.

Typology: Cheat Sheet

2021/2022

Uploaded on 02/07/2022

eshal
eshal 🇺🇸

4.3

(37)

258 documents

1 / 7

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
AP Statistics
Student Resource Packet
The following formulas and tables are similar to the ones
which will be provided to you on the Advanced Placement
Exam. You will be allowed to use the following resources
on select Quizzes and Exams as we proceed through the
course. Keep this packet in an accessible place !such as
your Statistics Binder" so you can refer to it when
needed.
Packet Contents:
Formula Card
z # Table Standard Normal Probabilities
t # Distribution Critical Values
Chi#square Table
1
pf3
pf4
pf5

Partial preview of the text

Download AP Statistics Formula sheet 2017 and more Cheat Sheet Statistics in PDF only on Docsity!

AP Statistics

Student Resource Packet

The following formulas and tables are similar to the ones

which will be provided to you on the Advanced Placement

Exam. You will be allowed to use the following resources

on select Quizzes and Exams as we proceed through the

course. Keep this packet in an accessible place !such as

your Statistics Binder" so you can refer to it when

needed.

Packet Contents: Formula Card z # Table Standard Normal Probabilities t # Distribution Critical Values Chi#square Table

I. Descriptive Statistics II. Probability ! x = " xi n ! P ( A # B ) = P ( A ) + P ( B ) $ P ( A % B ) ! P ( A | B ) = P ( A % B ) P ( B ) ! sx = 1 n $ 1 "( xi $^ x^ )^2 ! E ( X ) = μ x = (^) " xi pi ! Var ( X ) = & (^) x^2 = (^) "( xi $ μ x )^2 pi ! sp = ( n 1 $ 1 ) s 12 + ( n 2 $ 1 ) s 22 ( n 1 $ 1 ) + ( n 2 $ 1 ) If X has a binomial distribution with parameters n and p , then: ! y^ ˆ = b 0 + b 1 x ! P ( X = k ) = n k ' ( )

, p k ( 1 $ p ) n $ k ! μ x = np ! b 1 = "( xi $^ x^ )( yi $^ y^ ) "^ ( xi $^ x^ )^2 ! & x = np ( 1 $ p ) ! μ (^) p ˆ = p ! b 0 = y $ b 1 x ! & (^) p ˆ = p ( 1 $ p ) n ! r = 1 n $ 1 xi $ x sx ' ( )

" , yi $ y sy ' ( ))

,, ! b 1 = r sy sx ! sb 1 = " ( yi $^ y ˆ^ i )^2 n $ 2 "^ ( xi $^ x^ )^2 AP Statistics Formula Card mean ! μ and standard deviation ! & , then: If ! x is the mean of a random sample ! μ x = μ & x = & n of size n from an infinite population with

2004 AP

STATISTICS FREE-RESPONSE QUESTIONS

Probability z

Table entry for z is the

 - z Table A Standard normal probabilities 
  • $ probability lying below z

2004 AP

STATISTICS FREE-RESPONSE QUESTIONS

12 Probability z

Table A ( Continued )

z. 00. 01. 02. 03. 04. 05. 06. 07. 08. 09

Table entry for z is the

probability lying below z.

Table entry for z is the

probability lying below z.

2004 AP

STATISTICS FREE-RESPONSE QUESTIONS

Probability p

(χ^2 )

Table C χ 2 critical values Tail probability p df. 25. 20. 15. 10. 05. 025. 02. 01. 005. 0025. 001. 0005 1 1. 32 1. 64 2. 07 2. 71 3. 84 5. 02 5. 41 6. 63 7. 88 9. 14 10. 83 12. 12 2 2. 77 3. 22 3. 79 4. 61 5. 99 7. 38 7. 82 9. 21 10. 60 11. 98 13. 82 15. 20 3 4. 11 4. 64 5. 32 6. 25 7. 81 9. 35 9. 84 11. 34 12. 84 14. 32 16. 27 17. 73 4 5. 39 5. 99 6. 74 7. 78 9. 49 11. 14 11. 67 13. 28 14. 86 16. 42 18. 47 20. 00 5 6. 63 7. 29 8. 12 9. 24 11. 07 12. 83 13. 39 15. 09 16. 75 18. 39 20. 51 22. 11 6 7. 84 8. 56 9. 45 10. 64 12. 59 14. 45 15. 03 16. 81 18. 55 20. 25 22. 46 24. 10 7 9. 04 9. 80 10. 75 12. 02 14. 07 16. 01 16. 62 18. 48 20. 28 22. 04 24. 32 26. 02 8 10. 22 11. 03 12. 03 13. 36 15. 51 17. 53 18. 17 20. 09 21. 95 23. 77 26. 12 27. 87 9 11. 39 12. 24 13. 29 14. 68 16. 92 19. 02 19. 68 21. 67 23. 59 25. 46 27. 88 29. 67 10 12. 55 13. 44 14. 53 15. 99 18. 31 20. 48 21. 16 23. 21 25. 19 27. 11 29. 59 31. 42 11 13. 70 14. 63 15. 77 17. 28 19. 68 21. 92 22. 62 24. 72 26. 76 28. 73 31. 26 33. 14 12 14. 85 15. 81 16. 99 18. 55 21. 03 23. 34 24. 05 26. 22 28. 30 30. 32 32. 91 34. 82 13 15. 98 16. 98 18. 20 19. 81 22. 36 24. 74 25. 47 27. 69 29. 82 31. 88 34. 53 36. 48 14 17. 12 18. 15 19. 41 21. 06 23. 68 26. 12 26. 87 29. 14 31. 32 33. 43 36. 12 38. 11 15 18. 25 19. 31 20. 60 22. 31 25. 00 27. 49 28. 26 30. 58 32. 80 34. 95 37. 70 39. 72 16 19. 37 20. 47 21. 79 23. 54 26. 30 28. 85 29. 63 32. 00 34. 27 36. 46 39. 25 41. 31 17 20. 49 21. 61 22. 98 24. 77 27. 59 30. 19 31. 00 33. 41 35. 72 37. 95 40. 79 42. 88 18 21. 60 22. 76 24. 16 25. 99 28. 87 31. 53 32. 35 34. 81 37. 16 39. 42 42. 31 44. 43 19 22. 72 23. 90 25. 33 27. 20 30. 14 32. 85 33. 69 36. 19 38. 58 40. 88 43. 82 45. 97 20 23. 83 25. 04 26. 50 28. 41 31. 41 34. 17 35. 02 37. 57 40. 00 42. 34 45. 31 47. 50 21 24. 93 26. 17 27. 66 29. 62 32. 67 35. 48 36. 34 38. 93 41. 40 43. 78 46. 80 49. 01 22 26. 04 27. 30 28. 82 30. 81 33. 92 36. 78 37. 66 40. 29 42. 80 45. 20 48. 27 50. 51 23 27. 14 28. 43 29. 98 32. 01 35. 17 38. 08 38. 97 41. 64 44. 18 46. 62 49. 73 52. 00 24 28. 24 29. 55 31. 13 33. 20 36. 42 39. 36 40. 27 42. 98 45. 56 48. 03 51. 18 53. 48 25 29. 34 30. 68 32. 28 34. 38 37. 65 40. 65 41. 57 44. 31 46. 93 49. 44 52. 62 54. 95 26 30. 43 31. 79 33. 43 35. 56 38. 89 41. 92 42. 86 45. 64 48. 29 50. 83 54. 05 56. 41 27 31. 53 32. 91 34. 57 36. 74 40. 11 43. 19 44. 14 46. 96 49. 64 52. 22 55. 48 57. 86 28 32. 62 34. 03 35. 71 37. 92 41. 34 44. 46 45. 42 48. 28 50. 99 53. 59 56. 89 59. 30 29 33. 71 35. 14 36. 85 39. 09 42. 56 45. 72 46. 69 49. 59 52. 34 54. 97 58. 30 60. 73 30 34. 80 36. 25 37. 99 40. 26 43. 77 46. 98 47. 96 50. 89 53. 67 56. 33 59. 70 62. 16 40 45. 62 47. 27 49. 24 51. 81 55. 76 59. 34 60. 44 63. 69 66. 77 69. 70 73. 40 76. 09 50 56. 33 58. 16 60. 35 63. 17 67. 50 71. 42 72. 61 76. 15 79. 49 82. 66 86. 66 89. 56 60 66. 98 68. 97 71. 34 74. 40 79. 08 83. 30 84. 58 88. 38 91. 95 95. 34 99. 61 102. 7 80 88. 13 90. 41 93. 11 96. 58 101. 9 106. 6 108. 1 112. 3 116. 3 120. 1 124. 8 128. 3 100 109. 1 111. 7 114. 7 118. 5 124. 3 129. 6 131. 1 135. 8 140. 2 144. 3 149. 4 153. 2 Table entry for p is the point ( χ 2 )with probability p lying above it.