




Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
The standard reduction potentials in volts and mV/K for various elements and their compounds, including metals, non-metals, and their oxides and halides. The data is presented in a tabular format with the reaction and its corresponding potential.
What you will learn
Typology: Lecture notes
1 / 8
This page cannot be seen from the preview
Don't miss anything!
AP20 APPENDIX H Standard Reduction Potentials
Reaction E (volts) dE / dT (mV/K) Aluminum Al^3 ^ 3e^ T^ Al( s ) 1.677 0. AlCl 2 ^ 3e^ T^ Al( s ) Cl^ 1. AlF 3e^ T^ Al( s ) 6F^ 2. Al(OH) 3e^ T^ Al( s ) 4OH^ 2.328 1.
Antimony SbO^ 2H^ 3e^ T^ Sb( s ) H 2 O 0. Sb 2 O 3 ( s ) 6H^ 6e^ T^ 2Sb( s ) 3H 2 O 0.147 0. Sb( s ) 3H^ 3e^ T^ SbH 3 ( g ) 0.510 0.
Arsenic H 3 AsO 4 2H^ 2e^ T^ H 3 AsO 3 H 2 O 0.575 0. H 3 AsO 3 3H^ 3e^ T^ As( s ) 3H 2 O 0.247 5 0. As( s ) 3H^ 3e^ T^ AsH 3 ( g ) 0.238 0.
Barium Ba 2 ^ 2e^ Hg T^ Ba( in Hg ) 1. Ba^2 ^ 2e^ T^ Ba( s ) 2.906 0.
Beryllium Be 2 ^ 2e^ T^ Be( s ) 1.968 0.
Bismuth Bi 3 ^ 3e^ T^ Bi( s ) 0.308 0. BiCl 3e^ T^ Bi( s ) 4Cl^ 0. BiOCl( s ) 2H^ 3e^ T^ Bi( s ) H 2 O Cl^ 0. Boron 2B( s ) 6H^ 6e^ T^ B 2 H 6 ( g ) 0.150 0. B 4 O 14H^ 12e^ T^ 4B( s ) 7H 2 O 0. B(OH) 3 3H^ 3e^ T^ B( s ) 3H 2 O 0.889 0.
Bromine 2H^ 2e^ T^ BrO H 2 O 1.745 0. HOBr H^ e^ T^ Br 2 ( l ) H 2 O 1.584 0. BrO 6H^ 5e^ T^ Br 2 ( l ) 3H 2 O 1.513 0. Br 2 ( aq ) 2e^ T^ 2Br^ 1.098 0. Br 2 ( l ) 2e^ T^ 2Br^ 1.078 0. Br 2e^ T^ 3Br^ 1.062 0. BrO^ H 2 O 2e^ T^ Br^ 2OH^ 0.766 0. BrO 3H 2 O 6e^ T^ Br^ 6OH^ 0.613 1.
Cadmium Cd 2 ^ 2e^ Hg T^ Cd( in Hg ) 0. Cd 2 ^ 2e^ T^ Cd( s ) 0.402 0. Cd(C 2 O 4 )( s ) 2e^ T^ Cd( s ) C 2 O 0. Cd(C 2 O 4 ) 2e^ T^ Cd( s ) 2C 2 O 0. Cd(NH 3 ) 2e^ T^ Cd( s ) 4NH 3 0. CdS( s ) 2e^ T^ Cd( s ) S^2 ^ 1.
Calcium Ca( s ) 2H^ 2e^ T^ CaH 2 ( s ) 0. Ca^2 ^ 2e^ Hg T^ Ca( in Hg ) 2. Ca 2 ^ 2e^ T^ Ca( s ) 2.868 0.
2 4
2 4 2 2
2 4
3
3
1 2
3
1 2
BrO 3 4
2 7
4
4
3 6
*All species are aqueous unless otherwise indicated. The reference state for amalgams is an infinitely dilute solution of the element in Hg. The temperature coefficient, dE /dT allows us to calculate the standard potential, E (T), at temperature T: E (T) E (dE /dT) T, where T is T 298.15 K. Note the units mV/K for dE /dT. Once you know E for a net cell reaction at temperature T, you can find the equilibrium constant, K, for the reaction from the formula , where n is the number of electrons in each half-reaction, F is the Faraday constant, and R is the gas constant.
SOURCES : The most authoritative source is S. G. Bratsch, J. Phys. Chem. Ref. Data 1989, 18, 1. Additional data come from L. G. Sillén and A. E. Martell, Stability Constants of Metal-Ion Complexes (London: The Chemical Society, Special Publications Nos. 17 and 25. 1964 and 1971); G. Milazzo and S. Caroli, Tables of Standard Electrode Potentials (New York: Wiley, 1978); T. Mussini, P. Longhi, and S. Rondinini, Pure Appl. Chem. 1985, 57, 169. Another good source is A. J. Bard, R. Parsons, and J. Jordan. Standard Potentials in Aqueous Solution (New York: Marcel Dekker, 1985). Reduction potentials for 1 200 free radical reactions are given by P. Wardman, J. Phys. Chem. Ref. Data 1989, 18, 1637.
K 10 nFE °/ RT^ ln^10
Ca(acetate)^ 2e^ T^ Ca( s ) acetate^ 2. CaSO 4 ( s ) 2e^ T^ Ca( s ) SO 2. Ca(malonate)( s ) 2e^ T^ Ca( s ) malonate^2 ^ 3.
Carbon C 2 H 2 ( g ) 2H^ 2e^ T^ C 2 H 4 ( g ) 0.
CH 3 OH 2H^ 2e^ T^ CH 4 ( g ) H 2 O 0.583 0. Dehydroascorbic acid 2H^ 2e^ T^ ascorbic acid H 2 O 0. (CN) 2 ( g ) 2H^ 2e^ T^ 2HCN( aq ) 0. H 2 CO 2H^ 2e^ T^ CH 3 OH 0.237 0. C( s ) 4H^ 4e^ T^ CH 4 ( g ) 0.131 5 0.209 2 HCO 2 H 2H^ 2e^ T^ H 2 CO H 2 O 0.029 0. CO 2 ( g ) 2H^ 2e^ T^ CO( g ) H 2 O 0.103 8 0.397 7 CO 2 ( g ) 2H^ 2e^ T^ HCO 2 H 0.114 0. 2CO 2 ( g ) 2H^ 2e^ T^ H 2 C 2 O 4 0.432 1.
Cerium 1.72 1. 1.70 1 F HClO (^4) Ce 4 ^ e^ T^ Ce^3 ^ 1.44 1 F H 2 SO 4 1.61 1 F HNO 3 1.47 1 F HCl Ce^3 ^ 3e^ T^ Ce( s ) 2.336 0.
Cesium Cs^ e^ Hg T^ Cs( in Hg ) 1. Cs^ e^ T^ Cs( s ) 3.026 1.
Chlorine HClO 2 2H^ 2e^ T^ HOCl H 2 O 1.674 0. HClO H^ e^ T^ Cl 2 ( g ) H 2 O 1.630 0. ClO 6H^ 5e^ T^ Cl 2 ( g ) 3H 2 O 1.458 0. Cl 2 ( aq ) 2e^ T^ 2Cl^ 1.396 0. Cl 2 ( g ) 2e^ T^ 2Cl^ 1.360 4 1. ClO 2H^ 2e^ T^ ClO H 2 O 1.226 0. ClO 3H^ 2e^ T^ HClO 2 H 2 O 1.157 0. ClO 2H^ e^ T^ ClO 2 H 2 O 1.130 0. ClO 2 e^ T^ ClO 1.068 1.
Chromium Cr 2 O 14H^ 6e^ T^ 2Cr^3 ^ 7H 2 O 1.36 1. CrO 4H 2 O 3e^ T^ Cr(OH) 3 ( s , hydrated) 5OH^ 0.12 1. Cr 3 ^ e^ T^ Cr^2 ^ 0.42 1. Cr 3 ^ 3e^ T^ Cr( s ) 0.74 0. Cr 2 ^ 2e^ T^ Cr( s ) 0.89 0.
Cobalt 1.92 1. Co 3 ^ e^ T^ Co^2 ^ 1.817 8 F H 2 SO 4 1.850 4 F HNO 3 Co(NH 3 ) 5 (H 2 O)^3 ^ e^ T^ Co(NH 3 ) 5 (H 2 O)^2 ^ 0.37 1 F NH 4 NO 3 Co(NH 3 ) e^ T^ Co(NH 3 ) 0. CoOH^ H^ 2e^ T^ Co( s ) H 2 O 0.003 0. Co^2 ^ 2e^ T^ Co( s ) 0.282 0. Co(OH) 2 ( s ) 2e^ T^ Co( s ) 2OH^ 0.746 1.
Copper Cu^ e^ T^ Cu( s ) 0.518 0. Cu^2 ^ 2e^ T^ Cu( s ) 0.339 0. Cu 2 ^ e^ T^ Cu^ 0.161 0. CuCl( s ) e^ T^ Cu( s ) Cl^ 0. Cu(IO 3 ) 2 ( s ) 2e^ T^ Cu( s ) 2IO 0. Cu(ethylenediamine) e^ T^ Cu( s ) 2 ethylenediamine 0. CuI( s ) e^ T^ Cu( s ) I^ 0. Cu(EDTA) 2 ^ 2e^ T^ Cu( s ) EDTA^4 ^ 0. Cu(OH) 2 ( s ) 2e^ T^ Cu( s ) 2OH^ 0. Cu(CN) e^ T^ Cu( s ) 2CN^ 0. CuCN( s ) e^ T^ Cu( s ) CN^ 0.
2
2
3
2 6 3 6
2 4
2 7
2
3
3
3 4
1 2 3
1 2
O O 2H^ 2e^ T HO OH
2 4
(Continued)
APPENDIX H Standard Reduction Potentials
FeOOH( s ) 3H^ e^ T^ Fe^2 ^ 2H 2 O 0.74 1. Ferricinium^ e^ T^ ferrocene 0. Fe(CN) e^ T^ Fe(CN) 0. Fe(glutamate) 3 ^ e^ T^ Fe(glutamate) 2 ^ 0. FeOH^ H^ 2e^ T^ Fe( s ) H 2 O 0.16 0. Fe^2 ^ 2e^ T^ Fe( s ) 0.44 0. FeCO 3 ( s ) 2e^ T^ Fe( s ) CO 0.756 1. Lanthanum La^3 ^ 3e^ T^ La( s ) 2.379 0. La(succinate)^ 3e^ T^ La( s ) succinate^2 ^ 2.
Lead Pb 4 ^ 2e^ T^ Pb^2 ^ 1.69 1 F HNO 3 PbO 2 ( s ) 4H^ SO 2e^ T^ PbSO 4 ( s ) 2H 2 O 1. PbO 2 ( s ) 4H^ 2e^ T^ Pb^2 ^ 2H 2 O 1.458 0. 3PbO 2 ( s ) 2H 2 O 4e^ T^ Pb 3 O 4 ( s ) 4OH^ 0.269 1. Pb 3 O 4 ( s ) H 2 O 2e^ T^ 3PbO( s , red) 2OH^ 0.224 1. Pb 3 O 4 ( s ) H 2 O 2e^ T^ 3PbO( s , yellow) 2OH^ 0.207 1. Pb 2 ^ 2e^ T^ Pb( s ) 0.126 0. PbF 2 ( s ) 2e^ T^ Pb( s ) 2F^ 0. PbSO 4 ( s ) 2e^ T^ Pb( s ) SO 0.
Lithium Li^ e^ Hg T^ Li( in Hg ) 2. Li^ e^ T^ Li( s ) 3.040 0.
Lutetium Lu 3 ^ 3e^ T^ Lu( s ) 2.28 0. Magnesium Mg^2 ^ 2e^ Hg T^ Mg( in Hg ) 1. Mg(OH)^ H^ 2e^ T^ Mg( s ) H 2 O 2.022 0. Mg^2 ^ 2e^ T^ Mg( s ) 2.360 0. Mg(C 2 O 4 )( s ) 2e^ T^ Mg( s ) C 2 O 2. Mg(OH) 2 ( s ) 2e^ T^ Mg( s ) 2OH^ 2.690 0.
Manganese MnO 4H^ 3e^ T^ MnO 2 ( s ) 2H 2 O 1.692 0. Mn 3 ^ e^ T^ Mn^2 ^ 1.56 1. MnO 8H^ 5e^ T^ Mn^2 ^ 4H 2 O 1.507 0. Mn 2 O 3 ( s ) 6H^ 2e^ T^ 2Mn^2 ^ 3H 2 O 1.485 0. MnO 2 ( s ) 4H^ 2e^ T^ Mn^2 ^ 2H 2 O 1.230 0. Mn(EDTA)^ e^ T^ Mn(EDTA) 2 ^ 0.825 1. MnO e^ T^ MnO 0.56 2. 3Mn 2 O 3 ( s ) H 2 O 2e^ T^ 2Mn 3 O 4 ( s ) 2OH^ 0.002 1. Mn 3 O 4 ( s ) 4H 2 O 2e^ T^ 3Mn(OH) 2 ( s ) 2OH^ 0.352 1. Mn 2 ^ 2e^ T^ Mn( s ) 1.182 1. Mn(OH) 2 ( s ) 2e^ T^ Mn( s ) 2OH^ 1.565 1.
Mercury 2Hg 2 ^ 2e^ T^ Hg 0.908 0. Hg^2 ^ 2e^ T^ Hg( l ) 0.852 0. Hg 2e^ T^ 2Hg( l ) 0.796 0. Hg 2 SO 4 ( s ) 2e^ T^ 2Hg( l ) SO 0. Hg 2 Cl 2 ( s ) 2e^ T^ 2Hg( l ) 2Cl^
0.241 (saturated calomel electrode) Hg(OH) 2e^ T^ Hg( l ) 3OH^ 0. Hg(OH) 2 2e^ T^ Hg( l ) 2OH^ 0.206 1. Hg 2 Br 2 ( s ) 2e^ T^ 2Hg( l ) 2Br^ 0. HgO( s , yellow) H 2 O 2e^ T^ Hg( l ) 2OH^ 0.098 3 1. HgO( s , red) H 2 O 2e^ T^ Hg( l ) 2OH^ 0.097 7 1.120 6
Molybdenum MoO 2H 2 O 2e^ T^ MoO 2 ( s ) 4OH^ 0.818 1. MoO 4H 2 O 6e^ T^ Mo( s ) 8OH^ 0.926 1. MoO 2 ( s ) 2H 2 O 4e^ T^ Mo( s ) 4OH^ 0.980 1.
Neodymium Nd 3 ^ 3e^ T^ Nd( s ) 2.323 0. Neptunium NpO 2H^ e^ T^ NpO H 2 O 2. NpO 22 e^ T^ NpO 2 1.236 0.
2 2 3
2 4
2 4
3
2 4
2 2
2 2
2 4 4
4
4
2 4
2 4
2 4
2 3
4 6 3 6
APPENDIX H Standard Reduction Potentials AP
1 2 3
(Continued)
NpO 4H^ e^ T^ Np^4 ^ 2H 2 O 0.567 3. Np 4 ^ e^ T^ Np^3 ^ 0.157 1. Np^3 ^ 3e^ T^ Np( s ) 1.768 0. Nickel NiOOH( s ) 3H^ e^ T^ Ni^2 ^ 2H 2 O 2.05 1. Ni 2 ^ 2e^ T^ Ni( s ) 0.236 0. Ni(CN) e^ T^ Ni(CN) CN^ 0. Ni(OH) 2 ( s ) 2e^ T^ Ni( s ) 2OH^ 0.714 1.
Niobium Nb 2 O 5 ( s ) H^ e^ T^ NbO 2 ( s ) H 2 O 0.248 0. Nb 2 O 5 ( s ) 5H^ 5e^ T^ Nb( s ) H 2 O 0.601 0. NbO 2 ( s ) 2H^ 2e^ T^ NbO( s ) H 2 O 0.646 0. NbO 2 ( s ) 4H^ 4e^ T^ Nb( s ) 2H 2 O 0.690 0.
Nitrogen HN 3 3H^ 2e^ T^ N 2 ( g ) NH 2.079 0. N 2 O( g ) 2H^ 2e^ T^ N 2 ( g ) H 2 O 1.769 0. 2NO( g ) 2H^ 2e^ T^ N 2 O( g ) H 2 O 1.587 1. NO^ e^ T^ NO( g ) 1. 2NH 3 OH^ H^ 2e^ T^ N 2 H 2H 2 O 1.40 0. NH 3 OH^ 2H^ 2e^ T^ NH H 2 O 1.33 0. N 2 H 3H^ 2e^ T^ 2NH 1.250 0. HNO 2 H^ e^ T^ NO( g ) H 2 O 0.984 0. NO 4H^ 3e^ T^ NO( g ) 2H 2 O 0.955 0. NO 3H^ 2e^ T^ HNO 2 H 2 O 0.940 0. NO 2H^ e^ T^ N 2 O 4 ( g ) H 2 O 0.798 0. N 2 ( g ) 8H^ 6e^ T^ 2NH 0.274 0. N 2 ( g ) 5H^ 4e^ T^ N 2 H 0.214 0. N 2 ( g ) 2H 2 O 4H^ 2e^ T^ 2NH 3 OH^ 1.83 0. N 2 ( g ) H^ e^ T^ HN 3 3.334 2.
Osmium OsO 4 ( s ) 8H^ 8e^ T^ Os( s ) 4H 2 O 0.834 0. OsCl e^ T^ OsCl 0.85 1 F HCl Oxygen OH H^ e^ T^ H 2 O 2.56 1. O( g ) 2H^ 2e^ T^ H 2 O 2.430 1 1.148 4 O 3 ( g ) 2H^ 2e^ T^ O 2 ( g ) H 2 O 2.075 0. H 2 O 2 2H^ 2e^ T^ 2H 2 O 1.763 0. HO 2 H^ e^ T^ H 2 O 2 1.44 0. O 2 ( g ) 2H^ 2e^ T^ H 2 O 1.229 1 0.845 6 O 2 ( g ) 2H^ 2e^ T^ H 2 O 2 0.695 0. O 2 ( g ) H^ e^ T^ HO 2 0.05 1.
Palladium Pd 2 ^ 2e^ T^ Pd( s ) 0.915 0. PdO( s ) 2H^ 2e^ T^ Pd( s ) H 2 O 0.79 0. PdCl 2e^ T^ Pd( s ) 6Cl^ 0. PdO 2 ( s ) H 2 O 2e^ T^ PdO( s ) 2OH^ 0.64 1.
Phosphorus P 4 ( s , white) 3H^ 3e^ T^ PH 3 ( g ) 0.046 0. P 4 ( s , red) 3H^ 3e^ T^ PH 3 ( g ) 0.088 0. H 3 PO 4 2H^ 2e^ T^ H 3 PO 3 H 2 O 0.30 0. H 3 PO 4 5H^ 5e^ T^ P 4 ( s , white) 4H 2 O 0.402 0. H 3 PO 3 2H^ 2e^ T^ H 3 PO 2 H 2 O 0.48 0. H 3 PO 2 H^ e^ T^ P 4 ( s ) 2H 2 O 0.
Platinum Pt 2 ^ 2e^ T^ Pt( s ) 1.18 0. PtO 2 ( s ) 4H^ 4e^ T^ Pt( s ) 2H 2 O 0.92 0. PtCl 2e^ T^ Pt( s ) 4Cl^ 0. PtCl 2e^ T^ PtCl 2Cl^ 0. Plutonium PuO e^ T^ PuO 2 ( s ) 1.585 0. PuO 4H^ 2e^ T^ Pu^4 ^ 2H 2 O 1.000 1.615 1 Pu 4 ^ e^ T^ Pu^3 ^ 1.006 1. PuO e^ T^ PuO 0.966 0. PuO 2 ( s ) 4H^ 4e^ T^ Pu( s ) 2H 2 O 1.369 0. Pu 3 ^ 3e^ T^ Pu( s ) 1.978 0.
2 2 2
2 2
2
2 4 2 6
2 4
1 4
1 4
1 4
1 4
4 6
1 2
3 6
2 6
3 2
5
4
1 2
3
3
3
4
5
4
5
4
5 2 1 2
1 2
1 2
2 3 2 4
2
AP24 APPENDIX H Standard Reduction Potentials
Strontium Sr^2 ^ 2e^ T^ Sr( s ) 2.889 0.
Sulfur S 2 O 2e^ T^ 2SO 2. S 2 O 4H^ 2e^ T^ 2H 2 SO 3 0. 4SO 2 4H^ 6e^ T^ S 4 O 2H 2 O 0.539 1. SO 2 4H^ 4e^ T^ S( s ) 2H 2 O 0.450 0. 2H 2 SO 3 2H^ 4e^ T^ S 2 O 3H 2 O 0. S( s ) 2H^ 2e^ T^ H 2 S( g ) 0.174 0. S( s ) 2H^ 2e^ T^ H 2 S( aq ) 0.144 0. S 4 O 2H^ 2e^ T^ 2HS 2 O 0.10 0. 5S( s ) 2e^ T^ S 0. S( s ) 2e^ T^ S^2 ^ 0.476 0. 2S( s ) 2e^ T^ S 0.50 1. 2SO 3H 2 O 4e^ T^ S 2 O 6OH^ 0.566 1. SO 3H 2 O 4e^ T^ S( s ) 6OH^ 0.659 1. SO 4H 2 O 6e^ T^ S( s ) 8OH^ 0.751 1. SO H 2 O 2e^ T^ SO 2OH^ 0.936 1. 2SO 2H 2 O 2e^ T^ S 2 O 4OH^ 1.130 0. 2SO 2H 2 O 2e^ T^ S 2 O 4OH^ 1.71 1.
Tantalum Ta 2 O 5 ( s ) 10H^ 10e^ T^ 2Ta( s ) 5H 2 O 0.752 0.
Technetium TcO 2H 2 O 3e^ T^ TcO 2 ( s ) 4OH^ 0.366 1. TcO 4H 2 O 7e^ T^ Tc( s ) 8OH^ 0.474 1.
Tellurium TeO 3H 2 O 4e^ T^ Te( s ) 6OH^ 0.47 1. 2Te( s ) 2e^ T^ Te 0. Te( s ) 2e^ T^ Te^2 ^ 0.90 1.
Terbium Tb 4 ^ e^ T^ Tb^3 ^ 3.1 1. Tb 3 ^ 3e^ T^ Tb( s ) 2.28 0.
Thallium 1.280 0. 0.77 1 F HCl Tl 3 ^ 2e^ T^ Tl^ 1.22 1 F H 2 SO 4 1.23 1 F HNO 3 1.26 1 F HClO (^4) Tl^ e^ Hg T^ Tl( in Hg ) 0. Tl^ e^ T^ Tl( s ) 0.336 1. TlCl( s ) e^ T^ Tl( s ) Cl^ 0.
Thorium Th 4 ^ 4e^ T^ Th( s ) 1.826 0.
Thulium Tm 3 ^ 3e^ T^ Tm( s ) 2.319 0.
Tin Sn(OH) 3H^ 2e^ T^ Sn^2 ^ 3H 2 O 0. Sn^4 ^ 2e^ T^ Sn^2 ^ 0.139 1 F HCl SnO 2 ( s ) 4H^ 2e^ T^ Sn^2 ^ 2H 2 O 0.094 0. Sn 2 ^ 2e^ T^ Sn( s ) 0.141 0. SnF 4e^ T^ Sn( s ) 6F^ 0. Sn(OH) 2e^ T^ Sn(OH) 3OH^ 0. Sn( s ) 4H 2 O 4e^ T^ SnH 4 ( g ) 4OH^ 1.316 1. SnO 2 ( s ) H 2 O 2e^ T^ SnO( s ) 2OH^ 0.961 1.
Titanium TiO 2 ^ 2H^ e^ T^ Ti^3 ^ H 2 O 0.1 0. Ti^3 ^ e^ T^ Ti^2 ^ 0.9 1. TiO 2 ( s ) 4H^ 4e^ T^ Ti( s ) 2H 2 O 1.076 0. TiF 4e^ T^ Ti( s ) 6F^ 1. Ti 2 ^ 2e^ T^ Ti( s ) 1.60 0. Tungsten W(CN) e^ T^ W(CN) 0. W^6 ^ e^ T^ W^5 ^ 0.26 12 F HCl WO 3 ( s ) 6H^ 6e^ T^ W( s ) 3H 2 O 0.091 0.
4 8
3 8
2 6
3
2 6
2 6
3
2 2
2 3
4
4
2 6 2 4
2 4 2 3
2 3 2 4
2 4
2 3
2 3 2 3
2 2
2 5
3 2 6
2 3
2 6
2 6
2 4 2 8
AP26 APPENDIX H Standard Reduction Potentials
W^5 ^ e^ T^ W^4 ^ 0.3 12 F HCl WO 2 ( s ) 2H 2 O 4e^ T^ W( s ) 4OH^ 0.982 1. WO 4H 2 O 6e^ T^ W( s ) 8OH^ 1.060 1.
Uranium UO 4H^ e^ T^ U^4 ^ 2H 2 O 0.39 3. UO 4H^ 2e^ T^ U^4 ^ 2H 2 O 0.273 1. UO e^ T^ UO 0.16 0. U^4 ^ e^ T^ U^3 ^ 0.577 1. U^3 ^ 3e^ T^ U( s ) 1.642 0. Vanadium VO 2H^ e^ T^ VO^2 ^ H 2 O 1.001 0. VO 2 ^ 2H^ e^ T^ V^3 ^ H 2 O 0.337 1. V 3 ^ e^ T^ V^2 ^ 0.255 1. V^2 ^ 2e^ T^ V( s ) 1.125 0.
Xenon H 4 XeO 6 2H^ 2e^ T^ XeO 3 3H 2 O 2.38 0. XeF 2 2H^ 2e^ T^ Xe( g ) 2HF 2. XeO 3 6H^ 6e^ T^ Xe( g ) 3H 2 O 2.1 0.
Ytterbium Yb 3 ^ 3e^ T^ Yb( s ) 2.19 0. Yb^2 ^ 2e^ T^ Yb( s ) 2.76 0.
Yttrium Y 3 ^ 3e^ T^ Y( s ) 2.38 0. Zinc ZnOH^ H^ 2e^ T^ Zn( s ) H 2 O 0.497 0. Zn^2 ^ 2e^ T^ Zn( s ) 0.762 0. Zn^2 ^ 2e^ Hg T^ Zn( in Hg ) 0. Zn(NH 3 ) 2e^ T^ Zn( s ) 4NH 3 1. ZnCO 3 ( s ) 2e^ T^ Zn( s ) CO 1. Zn(OH) 2e^ T^ Zn( s ) 3OH^ 1. Zn(OH) 2e^ T^ Zn( s ) 4OH^ 1. Zn(OH) 2 ( s ) 2e^ T^ Zn( s ) 2OH^ 1.249 0. ZnO( s ) H 2 O 2e^ T^ Zn( s ) 2OH^ 1.260 1. ZnS( s ) 2e^ T^ Zn( s ) S^2 ^ 1.
Zirconium Zr 4 ^ 4e^ T^ Zr( s ) 1.45 0. ZrO 2 ( s ) 4H^ 4e^ T^ Zr( s ) 2H 2 O 1.473 0.
2 4
3
23
24
2
22 2
22
2
24
APPENDIX H Standard Reduction Potentials AP