Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Standard Reduction Potentials of Various Elements and Compounds, Lecture notes of Chemistry

The standard reduction potentials in volts and mV/K for various elements and their compounds, including metals, non-metals, and their oxides and halides. The data is presented in a tabular format with the reaction and its corresponding potential.

What you will learn

  • What is the standard reduction potential for Iron(III) in volts?
  • What is the standard reduction potential for Copper(II) in volts and mV/K?
  • What is the standard reduction potential for Selenium(VI) in mV/K?

Typology: Lecture notes

2021/2022

Uploaded on 09/12/2022

christina
christina 🇺🇸

4.6

(23)

404 documents

1 / 8

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
AP20 APPENDIX H Standard Reduction Potentials
APPENDIX H Standard Reduction Potentials*
Reaction E(volts) dE/dT (mV/K)
Aluminum
Al
3
3e
TAl(s)1.677 0.533
AlCl
2
3e
TAl(s) Cl
1.802
AlF 3e
TAl(s) 6F
2.069
Al(OH) 3e
TAl(s) 4OH
2.328 1.13
Antimony
SbO
2H
3e
TSb(s) H
2
O 0.208
Sb
2
O
3
(s) 6H
6e
T2Sb(s) 3H
2
O 0.147 0.369
Sb(s) 3H
3e
TSbH
3
(g)0.510 0.030
Arsenic
H
3
AsO
4
2H
2e
TH
3
AsO
3
H
2
O 0.575 0.257
H
3
AsO
3
3H
3e
TAs(s) 3H
2
O 0.247 5 0.505
As(s) 3H
3e
TAsH
3
(g)0.238 0.029
Barium
Ba
2
2e
Hg TBa(in Hg)1.717
Ba
2
2e
TBa(s)2.906 0.401
Beryllium
Be
2
2e
TBe(s)1.968 0.60
Bismuth
Bi
3
3e
TBi(s) 0.308 0.18
BiCl 3e
TBi(s) 4Cl
0.16
BiOCl(s) 2H
3e
TBi(s) H
2
O Cl
0.160
Boron
2B(s) 6H
6e
TB
2
H
6
(g)0.150 0.296
B
4
O14H
12e
T4B(s) 7H
2
O0.792
B(OH)
3
3H
3e
TB(s) 3H
2
O0.889 0.492
Bromine
2H
2e
TBrO H
2
O 1.745 0.511
HOBr H
e
TBr
2
(l) H
2
O 1.584 0.75
BrO 6H
5e
TBr
2
(l) 3H
2
O 1.513 0.419
Br
2
(aq) 2e
T2Br
1.098 0.499
Br
2
(l) 2e
T2Br
1.078 0.611
Br 2e
T3Br
1.062 0.512
BrO
H
2
O 2e
TBr
2OH
0.766 0.94
BrO 3H
2
O 6e
TBr
6OH
0.613 1.287
Cadmium
Cd
2
2e
Hg TCd(in Hg)0.380
Cd
2
2e
TCd(s)0.402 0.029
Cd(C
2
O
4
)(s) 2e
TCd(s) C
2
O0.522
Cd(C
2
O
4
)2e
TCd(s) 2C
2
O0.572
Cd(NH
3
)2e
TCd(s) 4NH
3
0.613
CdS(s) 2e
TCd(s) S
2
1.175
Calcium
Ca(s) 2H
2e
TCaH
2
(s) 0.776
Ca
2
2e
Hg TCa(in Hg)2.003
Ca
2
2e
TCa(s)2.868 0.186
2
4
2
4
2
2
2
4
3
3
1
2
3
1
2
3
BrO
4
2
7
4
4
3
6
*All species are aqueous unless otherwise indicated. The reference state for amalgams is an infinitely dilute solution of the element in
Hg. The temperature coefficient, dE/dT allows us to calculate the standard potential, E(T), at temperature T: E(T) E(dE/dT)T,
where T is T 298.15 K. Note the units mV/K for dE/dT. Once you know Efor a net cell reaction at temperature T, you can
find the equilibrium constant, K, for the reaction from the formula , where n is the number of electrons in each
half-reaction, F is the Faraday constant, and R is the gas constant.
SOURCES: The most authoritative source is S. G. Bratsch, J. Phys. Chem. Ref. Data 1989, 18, 1. Additional data come from L. G. Sillén
and A. E. Martell, Stability Constants of Metal-Ion Complexes (London: The Chemical Society, Special Publications Nos. 17 and 25.
1964 and 1971); G. Milazzo and S. Caroli, Tables of Standard Electrode Potentials (New York: Wiley, 1978); T. Mussini, P. Longhi,
and S. Rondinini, Pure Appl. Chem. 1985, 57, 169. Another good source is A. J. Bard, R. Parsons, and J. Jordan. Standard Potentials
in Aqueous Solution (New York: Marcel Dekker, 1985). Reduction potentials for 1 200 free radical reactions are given by P. Wardman,
J. Phys. Chem. Ref. Data 1989, 18, 1637.
K10
nFE°/RT ln 10
harxxxxx_App-H.qxd 2/15/10 5:25 PM Page AP20
pf3
pf4
pf5
pf8

Partial preview of the text

Download Standard Reduction Potentials of Various Elements and Compounds and more Lecture notes Chemistry in PDF only on Docsity!

AP20 APPENDIX H Standard Reduction Potentials

APPENDIX H Standard Reduction Potentials*

Reaction E  (volts) dE  / dT (mV/K) Aluminum Al^3 ^  3e^ T^ Al( s ) 1.677 0. AlCl 2 ^  3e^ T^ Al( s )  Cl^ 1. AlF  3e^ T^ Al( s )  6F^ 2. Al(OH)  3e^ T^ Al( s )  4OH^ 2.328 1.

Antimony SbO^  2H^  3e^ T^ Sb( s )  H 2 O 0. Sb 2 O 3 ( s )  6H^  6e^ T^ 2Sb( s )  3H 2 O 0.147 0. Sb( s )  3H^  3e^ T^ SbH 3 ( g ) 0.510 0.

Arsenic H 3 AsO 4  2H^  2e^ T^ H 3 AsO 3  H 2 O 0.575 0. H 3 AsO 3  3H^  3e^ T^ As( s )  3H 2 O 0.247 5 0. As( s )  3H^  3e^ T^ AsH 3 ( g ) 0.238 0.

Barium Ba 2 ^  2e^  Hg T^ Ba( in Hg ) 1. Ba^2 ^  2e^ T^ Ba( s ) 2.906 0.

Beryllium Be 2 ^  2e^ T^ Be( s ) 1.968 0.

Bismuth Bi 3 ^  3e^ T^ Bi( s ) 0.308 0. BiCl  3e^ T^ Bi( s )  4Cl^ 0. BiOCl( s )  2H^  3e^ T^ Bi( s )  H 2 O  Cl^ 0. Boron 2B( s )  6H^  6e^ T^ B 2 H 6 ( g ) 0.150 0. B 4 O  14H^  12e^ T^ 4B( s )  7H 2 O 0. B(OH) 3  3H^  3e^ T^ B( s )  3H 2 O 0.889 0.

Bromine  2H^  2e^ T^ BrO  H 2 O 1.745 0. HOBr  H^  e^ T^ Br 2 ( l )  H 2 O 1.584 0. BrO  6H^  5e^ T^ Br 2 ( l )  3H 2 O 1.513 0. Br 2 ( aq )  2e^ T^ 2Br^ 1.098 0. Br 2 ( l )  2e^ T^ 2Br^ 1.078 0. Br  2e^ T^ 3Br^ 1.062 0. BrO^  H 2 O  2e^ T^ Br^  2OH^ 0.766 0. BrO  3H 2 O  6e^ T^ Br^  6OH^ 0.613 1.

Cadmium Cd 2 ^  2e^  Hg T^ Cd( in Hg ) 0. Cd 2 ^  2e^ T^ Cd( s ) 0.402 0. Cd(C 2 O 4 )( s )  2e^ T^ Cd( s )  C 2 O 0. Cd(C 2 O 4 )  2e^ T^ Cd( s )  2C 2 O 0. Cd(NH 3 )  2e^ T^ Cd( s )  4NH 3 0. CdS( s )  2e^ T^ Cd( s )  S^2 ^ 1.

Calcium Ca( s )  2H^  2e^ T^ CaH 2 ( s ) 0. Ca^2 ^  2e^  Hg T^ Ca( in Hg ) 2. Ca 2 ^  2e^ T^ Ca( s ) 2.868 0.

2  4

2  4 2  2

2  4

 3

 3

1 2

 3

1 2

 BrO 3  4

2  7

 4

 4

3  6

*All species are aqueous unless otherwise indicated. The reference state for amalgams is an infinitely dilute solution of the element in Hg. The temperature coefficient, dE  /dT allows us to calculate the standard potential, E  (T), at temperature T: E  (T)  E   (dE  /dT)  T, where  T is T  298.15 K. Note the units mV/K for dE  /dT. Once you know E  for a net cell reaction at temperature T, you can find the equilibrium constant, K, for the reaction from the formula , where n is the number of electrons in each half-reaction, F is the Faraday constant, and R is the gas constant.

SOURCES : The most authoritative source is S. G. Bratsch, J. Phys. Chem. Ref. Data 1989, 18, 1. Additional data come from L. G. Sillén and A. E. Martell, Stability Constants of Metal-Ion Complexes (London: The Chemical Society, Special Publications Nos. 17 and 25. 1964 and 1971); G. Milazzo and S. Caroli, Tables of Standard Electrode Potentials (New York: Wiley, 1978); T. Mussini, P. Longhi, and S. Rondinini, Pure Appl. Chem. 1985, 57, 169. Another good source is A. J. Bard, R. Parsons, and J. Jordan. Standard Potentials in Aqueous Solution (New York: Marcel Dekker, 1985). Reduction potentials for 1 200 free radical reactions are given by P. Wardman, J. Phys. Chem. Ref. Data 1989, 18, 1637.

K  10 nFE °/ RT^ ln^10

AP

Ca(acetate)^  2e^ T^ Ca( s )  acetate^ 2. CaSO 4 ( s )  2e^ T^ Ca( s )  SO 2. Ca(malonate)( s )  2e^ T^ Ca( s )  malonate^2 ^ 3.

Carbon C 2 H 2 ( g )  2H^  2e^ T^ C 2 H 4 ( g ) 0.

CH 3 OH  2H^  2e^ T^ CH 4 ( g )  H 2 O 0.583 0. Dehydroascorbic acid  2H^  2e^ T^ ascorbic acid  H 2 O 0. (CN) 2 ( g )  2H^  2e^ T^ 2HCN( aq ) 0. H 2 CO  2H^  2e^ T^ CH 3 OH 0.237 0. C( s )  4H^  4e^ T^ CH 4 ( g ) 0.131 5 0.209 2 HCO 2 H  2H^  2e^ T^ H 2 CO  H 2 O 0.029 0. CO 2 ( g )  2H^  2e^ T^ CO( g )  H 2 O 0.103 8 0.397 7 CO 2 ( g )  2H^  2e^ T^ HCO 2 H 0.114 0. 2CO 2 ( g )  2H^  2e^ T^ H 2 C 2 O 4 0.432 1.

Cerium 1.72 1. 1.70 1 F HClO (^4) Ce 4 ^  e^ T^ Ce^3 ^ 1.44 1 F H 2 SO 4 1.61 1 F HNO 3 1.47 1 F HCl Ce^3 ^  3e^ T^ Ce( s ) 2.336 0.

Cesium Cs^  e^  Hg T^ Cs( in Hg ) 1. Cs^  e^ T^ Cs( s ) 3.026 1.

Chlorine HClO 2  2H^  2e^ T^ HOCl  H 2 O 1.674 0. HClO  H^  e^ T^ Cl 2 ( g )  H 2 O 1.630 0. ClO  6H^  5e^ T^ Cl 2 ( g )  3H 2 O 1.458 0. Cl 2 ( aq )  2e^ T^ 2Cl^ 1.396 0. Cl 2 ( g )  2e^ T^ 2Cl^ 1.360 4 1. ClO  2H^  2e^ T^ ClO  H 2 O 1.226 0. ClO  3H^  2e^ T^ HClO 2  H 2 O 1.157 0. ClO  2H^  e^ T^ ClO 2  H 2 O 1.130 0. ClO 2  e^ T^ ClO 1.068 1.

Chromium Cr 2 O  14H^  6e^ T^ 2Cr^3 ^  7H 2 O 1.36 1. CrO  4H 2 O  3e^ T^ Cr(OH) 3 ( s , hydrated)  5OH^ 0.12 1. Cr 3 ^  e^ T^ Cr^2 ^ 0.42 1. Cr 3 ^  3e^ T^ Cr( s ) 0.74 0. Cr 2 ^  2e^ T^ Cr( s ) 0.89 0.

Cobalt 1.92 1. Co 3 ^  e^ T^ Co^2 ^ 1.817 8 F H 2 SO 4 1.850 4 F HNO 3 Co(NH 3 ) 5 (H 2 O)^3 ^  e^ T^ Co(NH 3 ) 5 (H 2 O)^2 ^ 0.37 1 F NH 4 NO 3 Co(NH 3 )  e^ T^ Co(NH 3 ) 0. CoOH^  H^  2e^ T^ Co( s )  H 2 O 0.003 0. Co^2 ^  2e^ T^ Co( s ) 0.282 0. Co(OH) 2 ( s )  2e^ T^ Co( s )  2OH^ 0.746 1.

Copper Cu^  e^ T^ Cu( s ) 0.518 0. Cu^2 ^  2e^ T^ Cu( s ) 0.339 0. Cu 2 ^  e^ T^ Cu^ 0.161 0. CuCl( s )  e^ T^ Cu( s )  Cl^ 0. Cu(IO 3 ) 2 ( s )  2e^ T^ Cu( s )  2IO 0. Cu(ethylenediamine)  e^ T^ Cu( s )  2 ethylenediamine 0. CuI( s )  e^ T^ Cu( s )  I^ 0. Cu(EDTA) 2 ^  2e^ T^ Cu( s )  EDTA^4 ^ 0. Cu(OH) 2 ( s )  2e^ T^ Cu( s )  2OH^ 0. Cu(CN)  e^ T^ Cu( s )  2CN^ 0. CuCN( s )  e^ T^ Cu( s )  CN^ 0.

 2

 2

 3

2  6 3  6

2  4

2  7

 2

 3

 3

 3  4

1 2  3

1 2

O O  2H^  2e^ T HO OH

2  4

(Continued)

APPENDIX H Standard Reduction Potentials

FeOOH( s )  3H^  e^ T^ Fe^2 ^  2H 2 O 0.74 1. Ferricinium^  e^ T^ ferrocene 0. Fe(CN)  e^ T^ Fe(CN) 0. Fe(glutamate) 3 ^  e^ T^ Fe(glutamate) 2 ^ 0. FeOH^  H^  2e^ T^ Fe( s )  H 2 O 0.16 0. Fe^2 ^  2e^ T^ Fe( s ) 0.44 0. FeCO 3 ( s )  2e^ T^ Fe( s )  CO 0.756 1. Lanthanum La^3 ^  3e^ T^ La( s ) 2.379 0. La(succinate)^  3e^ T^ La( s )  succinate^2 ^ 2.

Lead Pb 4 ^  2e^ T^ Pb^2 ^ 1.69 1 F HNO 3 PbO 2 ( s )  4H^  SO  2e^ T^ PbSO 4 ( s )  2H 2 O 1. PbO 2 ( s )  4H^  2e^ T^ Pb^2 ^  2H 2 O 1.458 0. 3PbO 2 ( s )  2H 2 O  4e^ T^ Pb 3 O 4 ( s )  4OH^ 0.269 1. Pb 3 O 4 ( s )  H 2 O  2e^ T^ 3PbO( s , red)  2OH^ 0.224 1. Pb 3 O 4 ( s )  H 2 O  2e^ T^ 3PbO( s , yellow)  2OH^ 0.207 1. Pb 2 ^  2e^ T^ Pb( s ) 0.126 0. PbF 2 ( s )  2e^ T^ Pb( s )  2F^ 0. PbSO 4 ( s )  2e^ T^ Pb( s )  SO 0.

Lithium Li^  e^  Hg T^ Li( in Hg ) 2. Li^  e^ T^ Li( s ) 3.040 0.

Lutetium Lu 3 ^  3e^ T^ Lu( s ) 2.28 0. Magnesium Mg^2 ^  2e^  Hg T^ Mg( in Hg ) 1. Mg(OH)^  H^  2e^ T^ Mg( s )  H 2 O 2.022 0. Mg^2 ^  2e^ T^ Mg( s ) 2.360 0. Mg(C 2 O 4 )( s )  2e^ T^ Mg( s )  C 2 O 2. Mg(OH) 2 ( s )  2e^ T^ Mg( s )  2OH^ 2.690 0.

Manganese MnO  4H^  3e^ T^ MnO 2 ( s )  2H 2 O 1.692 0. Mn 3 ^  e^ T^ Mn^2 ^ 1.56 1. MnO  8H^  5e^ T^ Mn^2 ^  4H 2 O 1.507 0. Mn 2 O 3 ( s )  6H^  2e^ T^ 2Mn^2 ^  3H 2 O 1.485 0. MnO 2 ( s )  4H^  2e^ T^ Mn^2 ^  2H 2 O 1.230 0. Mn(EDTA)^  e^ T^ Mn(EDTA) 2 ^ 0.825 1. MnO  e^ T^ MnO 0.56 2. 3Mn 2 O 3 ( s )  H 2 O  2e^ T^ 2Mn 3 O 4 ( s )  2OH^ 0.002 1. Mn 3 O 4 ( s )  4H 2 O  2e^ T^ 3Mn(OH) 2 ( s )  2OH^ 0.352 1. Mn 2 ^  2e^ T^ Mn( s ) 1.182 1. Mn(OH) 2 ( s )  2e^ T^ Mn( s )  2OH^ 1.565 1.

Mercury 2Hg 2 ^  2e^ T^ Hg 0.908 0. Hg^2 ^  2e^ T^ Hg( l ) 0.852 0. Hg  2e^ T^ 2Hg( l ) 0.796 0. Hg 2 SO 4 ( s )  2e^ T^ 2Hg( l )  SO 0. Hg 2 Cl 2 ( s )  2e^ T^ 2Hg( l )  2Cl^

0.241 (saturated calomel electrode) Hg(OH)  2e^ T^ Hg( l )  3OH^ 0. Hg(OH) 2  2e^ T^ Hg( l )  2OH^ 0.206 1. Hg 2 Br 2 ( s )  2e^ T^ 2Hg( l )  2Br^ 0. HgO( s , yellow)  H 2 O  2e^ T^ Hg( l )  2OH^ 0.098 3 1. HgO( s , red)  H 2 O  2e^ T^ Hg( l )  2OH^ 0.097 7 1.120 6

Molybdenum MoO  2H 2 O  2e^ T^ MoO 2 ( s )  4OH^ 0.818 1. MoO  4H 2 O  6e^ T^ Mo( s )  8OH^ 0.926 1. MoO 2 ( s )  2H 2 O  4e^ T^ Mo( s )  4OH^ 0.980 1.

Neodymium Nd 3 ^  3e^ T^ Nd( s ) 2.323 0. Neptunium NpO  2H^  e^ T^ NpO  H 2 O 2. NpO 22  e^ T^ NpO  2 1.236 0.

2  2  3

2  4

2  4

 3

2  4

2  2

2  2

2  4  4

 4

 4

2  4

2  4

2  4

2  3

4  6 3  6

APPENDIX H Standard Reduction Potentials AP

1 2 3

(Continued)

NpO  4H^  e^ T^ Np^4 ^  2H 2 O 0.567 3. Np 4 ^  e^ T^ Np^3 ^ 0.157 1. Np^3 ^  3e^ T^ Np( s ) 1.768 0. Nickel NiOOH( s )  3H^  e^ T^ Ni^2 ^  2H 2 O 2.05 1. Ni 2 ^  2e^ T^ Ni( s ) 0.236 0. Ni(CN)  e^ T^ Ni(CN)  CN^ 0. Ni(OH) 2 ( s )  2e^ T^ Ni( s )  2OH^ 0.714 1.

Niobium Nb 2 O 5 ( s )  H^  e^ T^ NbO 2 ( s )  H 2 O 0.248 0. Nb 2 O 5 ( s )  5H^  5e^ T^ Nb( s )  H 2 O 0.601 0. NbO 2 ( s )  2H^  2e^ T^ NbO( s )  H 2 O 0.646 0. NbO 2 ( s )  4H^  4e^ T^ Nb( s )  2H 2 O 0.690 0.

Nitrogen HN 3  3H^  2e^ T^ N 2 ( g )  NH 2.079 0. N 2 O( g )  2H^  2e^ T^ N 2 ( g )  H 2 O 1.769 0. 2NO( g )  2H^  2e^ T^ N 2 O( g )  H 2 O 1.587 1. NO^  e^ T^ NO( g ) 1. 2NH 3 OH^  H^  2e^ T^ N 2 H  2H 2 O 1.40 0. NH 3 OH^  2H^  2e^ T^ NH  H 2 O 1.33 0. N 2 H  3H^  2e^ T^ 2NH 1.250 0. HNO 2  H^  e^ T^ NO( g )  H 2 O 0.984 0. NO  4H^  3e^ T^ NO( g )  2H 2 O 0.955 0. NO  3H^  2e^ T^ HNO 2  H 2 O 0.940 0. NO  2H^  e^ T^ N 2 O 4 ( g )  H 2 O 0.798 0. N 2 ( g )  8H^  6e^ T^ 2NH 0.274 0. N 2 ( g )  5H^  4e^ T^ N 2 H 0.214 0. N 2 ( g )  2H 2 O  4H^  2e^ T^ 2NH 3 OH^ 1.83 0. N 2 ( g )  H^  e^ T^ HN 3 3.334 2.

Osmium OsO 4 ( s )  8H^  8e^ T^ Os( s )  4H 2 O 0.834 0. OsCl  e^ T^ OsCl 0.85 1 F HCl Oxygen OH  H^  e^ T^ H 2 O 2.56 1. O( g )  2H^  2e^ T^ H 2 O 2.430 1 1.148 4 O 3 ( g )  2H^  2e^ T^ O 2 ( g )  H 2 O 2.075 0. H 2 O 2  2H^  2e^ T^ 2H 2 O 1.763 0. HO 2  H^  e^ T^ H 2 O 2 1.44 0. O 2 ( g )  2H^  2e^ T^ H 2 O 1.229 1 0.845 6 O 2 ( g )  2H^  2e^ T^ H 2 O 2 0.695 0. O 2 ( g )  H^  e^ T^ HO 2 0.05 1.

Palladium Pd 2 ^  2e^ T^ Pd( s ) 0.915 0. PdO( s )  2H^  2e^ T^ Pd( s )  H 2 O 0.79 0. PdCl  2e^ T^ Pd( s )  6Cl^ 0. PdO 2 ( s )  H 2 O  2e^ T^ PdO( s )  2OH^ 0.64 1.

Phosphorus P 4 ( s , white)  3H^  3e^ T^ PH 3 ( g ) 0.046 0. P 4 ( s , red)  3H^  3e^ T^ PH 3 ( g ) 0.088 0. H 3 PO 4  2H^  2e^ T^ H 3 PO 3  H 2 O 0.30 0. H 3 PO 4  5H^  5e^ T^ P 4 ( s , white)  4H 2 O 0.402 0. H 3 PO 3  2H^  2e^ T^ H 3 PO 2  H 2 O 0.48 0. H 3 PO 2  H^  e^ T^ P 4 ( s )  2H 2 O 0.

Platinum Pt 2 ^  2e^ T^ Pt( s ) 1.18 0. PtO 2 ( s )  4H^  4e^ T^ Pt( s )  2H 2 O 0.92 0. PtCl  2e^ T^ Pt( s )  4Cl^ 0. PtCl  2e^ T^ PtCl  2Cl^ 0. Plutonium PuO  e^ T^ PuO 2 ( s ) 1.585 0. PuO  4H^  2e^ T^ Pu^4 ^  2H 2 O 1.000 1.615 1 Pu 4 ^  e^ T^ Pu^3 ^ 1.006 1. PuO  e^ T^ PuO 0.966 0. PuO 2 ( s )  4H^  4e^ T^ Pu( s )  2H 2 O 1.369 0. Pu 3 ^  3e^ T^ Pu( s ) 1.978 0.

 2 2  2

2  2

 2

2  4 2  6

2  4

1 4

1 4

1 4

1 4

4  6

1 2

3  6

2  6

3 2

 5

 4

1 2

 3

 3

 3

 4

 5

 4

 5

 4

5 2 1 2

1 2

1 2

2  3 2  4

 2

AP24 APPENDIX H Standard Reduction Potentials

Strontium Sr^2 ^  2e^ T^ Sr( s ) 2.889 0.

Sulfur S 2 O  2e^ T^ 2SO 2. S 2 O  4H^  2e^ T^ 2H 2 SO 3 0. 4SO 2  4H^  6e^ T^ S 4 O  2H 2 O 0.539 1. SO 2  4H^  4e^ T^ S( s )  2H 2 O 0.450 0. 2H 2 SO 3  2H^  4e^ T^ S 2 O  3H 2 O 0. S( s )  2H^  2e^ T^ H 2 S( g ) 0.174 0. S( s )  2H^  2e^ T^ H 2 S( aq ) 0.144 0. S 4 O  2H^  2e^ T^ 2HS 2 O 0.10 0. 5S( s )  2e^ T^ S 0. S( s )  2e^ T^ S^2 ^ 0.476 0. 2S( s )  2e^ T^ S 0.50 1. 2SO  3H 2 O  4e^ T^ S 2 O  6OH^ 0.566 1. SO  3H 2 O  4e^ T^ S( s )  6OH^ 0.659 1. SO  4H 2 O  6e^ T^ S( s )  8OH^ 0.751 1. SO  H 2 O  2e^ T^ SO  2OH^ 0.936 1. 2SO  2H 2 O  2e^ T^ S 2 O  4OH^ 1.130 0. 2SO  2H 2 O  2e^ T^ S 2 O  4OH^ 1.71 1.

Tantalum Ta 2 O 5 ( s )  10H^  10e^ T^ 2Ta( s )  5H 2 O 0.752 0.

Technetium TcO  2H 2 O  3e^ T^ TcO 2 ( s )  4OH^ 0.366 1. TcO  4H 2 O  7e^ T^ Tc( s )  8OH^ 0.474 1.

Tellurium TeO  3H 2 O  4e^ T^ Te( s )  6OH^ 0.47 1. 2Te( s )  2e^ T^ Te 0. Te( s )  2e^ T^ Te^2 ^ 0.90 1.

Terbium Tb 4 ^  e^ T^ Tb^3 ^ 3.1 1. Tb 3 ^  3e^ T^ Tb( s ) 2.28 0.

Thallium 1.280 0. 0.77 1 F HCl Tl 3 ^  2e^ T^ Tl^ 1.22 1 F H 2 SO 4 1.23 1 F HNO 3 1.26 1 F HClO (^4) Tl^  e^  Hg T^ Tl( in Hg ) 0. Tl^  e^ T^ Tl( s ) 0.336 1. TlCl( s )  e^ T^ Tl( s )  Cl^ 0.

Thorium Th 4 ^  4e^ T^ Th( s ) 1.826 0.

Thulium Tm 3 ^  3e^ T^ Tm( s ) 2.319 0.

Tin Sn(OH)  3H^  2e^ T^ Sn^2 ^  3H 2 O 0. Sn^4 ^  2e^ T^ Sn^2 ^ 0.139 1 F HCl SnO 2 ( s )  4H^  2e^ T^ Sn^2 ^  2H 2 O 0.094 0. Sn 2 ^  2e^ T^ Sn( s ) 0.141 0. SnF  4e^ T^ Sn( s )  6F^ 0. Sn(OH)  2e^ T^ Sn(OH)  3OH^ 0. Sn( s )  4H 2 O  4e^ T^ SnH 4 ( g )  4OH^ 1.316 1. SnO 2 ( s )  H 2 O  2e^ T^ SnO( s )  2OH^ 0.961 1.

Titanium TiO 2 ^  2H^  e^ T^ Ti^3 ^  H 2 O 0.1 0. Ti^3 ^  e^ T^ Ti^2 ^ 0.9 1. TiO 2 ( s )  4H^  4e^ T^ Ti( s )  2H 2 O 1.076 0. TiF  4e^ T^ Ti( s )  6F^ 1. Ti 2 ^  2e^ T^ Ti( s ) 1.60 0. Tungsten W(CN)  e^ T^ W(CN) 0. W^6 ^  e^ T^ W^5 ^ 0.26 12 F HCl WO 3 ( s )  6H^  6e^ T^ W( s )  3H 2 O 0.091 0.

4  8

3  8

2  6

 3

2  6

2  6

 3

2  2

2  3

 4

 4

2  6 2  4

2  4 2  3

2  3 2  4

2  4

2  3

2  3 2  3

2  2

2  5

 3 2  6

2  3

2  6

2  6

2  4 2  8

AP26 APPENDIX H Standard Reduction Potentials

W^5 ^  e^ T^ W^4 ^ 0.3 12 F HCl WO 2 ( s )  2H 2 O  4e^ T^ W( s )  4OH^ 0.982 1. WO  4H 2 O  6e^ T^ W( s )  8OH^ 1.060 1.

Uranium UO  4H^  e^ T^ U^4 ^  2H 2 O 0.39 3. UO  4H^  2e^ T^ U^4 ^  2H 2 O 0.273 1. UO  e^ T^ UO 0.16 0. U^4 ^  e^ T^ U^3 ^ 0.577 1. U^3 ^  3e^ T^ U( s ) 1.642 0. Vanadium VO  2H^  e^ T^ VO^2 ^  H 2 O 1.001 0. VO 2 ^  2H^  e^ T^ V^3 ^  H 2 O 0.337 1. V 3 ^  e^ T^ V^2 ^ 0.255 1. V^2 ^  2e^ T^ V( s ) 1.125 0.

Xenon H 4 XeO 6  2H^  2e^ T^ XeO 3  3H 2 O 2.38 0. XeF 2  2H^  2e^ T^ Xe( g )  2HF 2. XeO 3  6H^  6e^ T^ Xe( g )  3H 2 O 2.1 0.

Ytterbium Yb 3 ^  3e^ T^ Yb( s ) 2.19 0. Yb^2 ^  2e^ T^ Yb( s ) 2.76 0.

Yttrium Y 3 ^  3e^ T^ Y( s ) 2.38 0. Zinc ZnOH^  H^  2e^ T^ Zn( s )  H 2 O 0.497 0. Zn^2 ^  2e^ T^ Zn( s ) 0.762 0. Zn^2 ^  2e^  Hg T^ Zn( in Hg ) 0. Zn(NH 3 )  2e^ T^ Zn( s )  4NH 3 1. ZnCO 3 ( s )  2e^ T^ Zn( s )  CO 1. Zn(OH)  2e^ T^ Zn( s )  3OH^ 1. Zn(OH)  2e^ T^ Zn( s )  4OH^ 1. Zn(OH) 2 ( s )  2e^ T^ Zn( s )  2OH^ 1.249 0. ZnO( s )  H 2 O  2e^ T^ Zn( s )  2OH^ 1.260 1. ZnS( s )  2e^ T^ Zn( s )  S^2 ^ 1.

Zirconium Zr 4 ^  4e^ T^ Zr( s ) 1.45 0. ZrO 2 ( s )  4H^  4e^ T^ Zr( s )  2H 2 O 1.473 0.

2  4

 3

23 

24 

 2

22   2

22 

 2

24 

APPENDIX H Standard Reduction Potentials AP