Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Arc Length - Lecture Notes - Calculus II | MATH 1920, Study notes of Calculus

Material Type: Notes; Class: Calculus II; Subject: Mathematics; University: Pellissippi State Technical Community College; Term: Unknown 1989;

Typology: Study notes

Pre 2010

Uploaded on 08/16/2009

koofers-user-g9t
koofers-user-g9t 🇺🇸

10 documents

1 / 3

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Arc Length -Lecture Notes
Section 6.3
If a smooth curve is traced out EXACTLY ONCE by the parametric equations xftand ygtfor
atbthen its length is
La
bdx
dt
2dy
dt
2dt
Find the arc length of the following curves:
1.xcost,ysint,0t2
dx
dt sintdy
dt cost
L0
2sint2cost2dt 0
2sin2tcos2t dt
0
21dt 0
2dt 202
What if we looked at xrcost,yrsint,0t2?
2.xetet,y52t,0t3
dx
dt etetdy
dt 2
L0
3etet222dt 0
3e2t2e2t4dt
0
3e2t2e2tdt 0
3etet2dt
0
3etetdt etet|0
3e3e3e0e0e31
e320.036
If yfx, then we can regard xas the parameter so that the arc length for axbbecomes
La
b1dy
dx
2dx
If xfy, then we can regard yas the parameter so that the arc length for aybbecomes
La
bdx
dy
21dy
Find the arc length of the following curves:
1.ylncosxfor 0 x/4
dy
dx 1
cosxsinxsinx
cosxtanx
pf3

Partial preview of the text

Download Arc Length - Lecture Notes - Calculus II | MATH 1920 and more Study notes Calculus in PDF only on Docsity!

Arc Length - Lecture Notes Section 6.

If a smooth curve is traced out EXACTLY ONCE by the parametric equations xft  and ygt  for atb then its length is

L  

a

b dx dt

2 

dy dt

2 dt

Find the arc length of the following curves:

1. x  cos t , y  sin t , 0 ≤ t ≤ 2  dx dt

 − sin t

dy dt

 cos t

L  

0

2

− sin t ^2  cos t ^2 dt  

0

2 sin 2 t  cos 2 t dt

0

2

1 dt  

0

2  dt  2 − 0  2

What if we looked at xr cos t , yr sin t , 0 ≤ t ≤ 2 ?

2. xe t^  et , y  5 − 2 t , 0 ≤ t ≤ 3 dx dt

e t^ − et^

dy dt

L  

0

3  e t^ − et^  2  − 2  2

dt  

0

3 e^2 t^ − 2  e −^2 t^  4 dt

0

3

e^2 t^  2  e −^2 t^ dt  

0

3  e t^  et^ ^2 dt

0

3  e t^  et^  dt   e t^ − et^ | 03   e^3 − e −^3  −  e^0 − e^0   e^3 − 1 e^3

If yfx , then we can regard x as the parameter so that the arc length for axb becomes

L  

a

b 1 

dy dx

2 dx

If xfy , then we can regard y as the parameter so that the arc length for ayb becomes

L  

a

b dx dy

2  1 dy

Find the arc length of the following curves:

1. y  lncos x  for 0 ≤ x /

dy dx

 (^) cos^1 x − sin x   − (^) cossin^ x x  − tan x

L  

0

/

1  − tan x ^2 dx  

0

/ 1  tan 2 x dx

0

/

sec 2 x dx  

0

/ sec x dx

14  ln|sec x  tan x || (^0) /

 ln 2  1 − ln|1  0|  ln 2  1 ≈ 0. 881

2. x   y − 1 3/2^ between 0, 1 and 8, 5. Here parameter is y. Sketch in parametric mode: X 1 T   T − 1 ^3/2 and Y 1 TT. Use Window settings: tmin1, tmax5, tstep.05; − 1 ≤ x ≤ 9 and 0 ≤ y ≤ 6.

dx dy

y^ −^1  1/2 (^)  dx dy

2  3 2

y^ −^1 

y^ −^1  ^9 4

y − 9 4

L  

1

5 9 4

y − 9 4

 1 dy  

1

5 9 4

y − 5 4

dy

Let u  94 y − 54 , then du  94 dy or 49 dudy. Also, change limits of integration: For

y  1  u  9 4

y  5  u  9 4

1

5 9 4

y − 5 4

dy  

1

10 u^4 9

du  4 9

1

10 u 1/2^ du

u 3/ 1

10  8 27

 10 3/2^ −^1 3/2^ 

 10 3/2^ − 1  ≈ 9. 0734

Most integrals we get finding arc length are very difficult or impossible to integrate. Hence, we need to use a numerical approximation like Simpson’s Rule.

Use Simpson’s Rule with n  8 to approximate the length of y  (^1) x from x  1 to x  3.

dy dx

x^2

L  

1

3 1  − 1 x^2

2

dx  

1

3 1  1 x^4

dx

Δ x  3 − 81  14  0. 25