

Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Material Type: Notes; Class: Calculus II; Subject: Mathematics; University: Pellissippi State Technical Community College; Term: Unknown 1989;
Typology: Study notes
1 / 3
This page cannot be seen from the preview
Don't miss anything!
Arc Length - Lecture Notes Section 6.
If a smooth curve is traced out EXACTLY ONCE by the parametric equations x f t and y g t for a ≤ t ≤ b then its length is
a
b dx dt
2
dy dt
2 dt
Find the arc length of the following curves:
1. x cos t , y sin t , 0 ≤ t ≤ 2 dx dt
− sin t
dy dt
cos t
0
2
0
2 sin 2 t cos 2 t dt
0
2
0
2 dt 2 − 0 2
What if we looked at x r cos t , y r sin t , 0 ≤ t ≤ 2 ?
2. x e t^ e − t , y 5 − 2 t , 0 ≤ t ≤ 3 dx dt
e t^ − e − t^
dy dt
0
3 e t^ − e − t^ 2 − 2 2
0
3 e^2 t^ − 2 e −^2 t^ 4 dt
0
3
0
3 e t^ e − t^ ^2 dt
0
3 e t^ e − t^ dt e t^ − e − t^ | 03 e^3 − e −^3 − e^0 − e^0 e^3 − 1 e^3
If y f x , then we can regard x as the parameter so that the arc length for a ≤ x ≤ b becomes
a
b 1
dy dx
2 dx
If x f y , then we can regard y as the parameter so that the arc length for a ≤ y ≤ b becomes
a
b dx dy
2 1 dy
Find the arc length of the following curves:
1. y lncos x for 0 ≤ x ≤ /
dy dx
(^) cos^1 x − sin x − (^) cossin^ x x − tan x
0
/
0
/ 1 tan 2 x dx
0
/
0
/ sec x dx
14 ln|sec x tan x || (^0) /
ln 2 1 − ln|1 0| ln 2 1 ≈ 0. 881
2. x y − 1 3/2^ between 0, 1 and 8, 5. Here parameter is y. Sketch in parametric mode: X 1 T T − 1 ^3/2 and Y 1 T T. Use Window settings: tmin1, tmax5, tstep.05; − 1 ≤ x ≤ 9 and 0 ≤ y ≤ 6.
dx dy
y^ −^1 1/2 (^) dx dy
2 3 2
y^ −^1
y^ −^1 ^9 4
y − 9 4
1
5 9 4
y − 9 4
1
5 9 4
y − 5 4
dy
Let u 94 y − 54 , then du 94 dy or 49 du dy. Also, change limits of integration: For
y 1 u 9 4
y 5 u 9 4
1
5 9 4
y − 5 4
1
10 u^4 9
du 4 9
1
10 u 1/2^ du
u 3/ 1
10 8 27
Most integrals we get finding arc length are very difficult or impossible to integrate. Hence, we need to use a numerical approximation like Simpson’s Rule.
Use Simpson’s Rule with n 8 to approximate the length of y (^1) x from x 1 to x 3.
dy dx
x^2
1
3 1 − 1 x^2
2
1
3 1 1 x^4
dx
Δ x 3 − 81 14 0. 25