Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Assignment on Engineering mathematics, Assignments of Mathematics

It is based on Partial Differential Equations ex:Jacobian

Typology: Assignments

2022/2023

Uploaded on 10/09/2023

jai-yadav-1
jai-yadav-1 🇮🇳

1 document

1 / 1

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
bf
Course: B.Tech.
Subject: Engineering Mathematics-I
Code: TMA-101
1. If
u xyz,v xy yz zx,w x y z= = + + = + +
.
The prove that:
.
2. If
2 3 1 3 21
1 2 3
1 2 3
x x x x xx
y ,y , y
xxx
= = =
.
The prove that:
( )
( )
1 2 3
1 2 3
4
y ,y ,y
x ,x ,x
=
.
3. If
2 2 2
u xy yz zx,v x y z ,w x y z,= + + = + + = + +
determine whether there is a functional relationship
between u, v and w and if so, find it.
4. If
3 3 2 2 3 3
u v x y,v u x y+ = + + = +
The prove that:
( )
( )
( )
( )
22
2
yx
u,v
x, y uv u v
=
−
.
5. If u, v and w are the roots of the equation
( ) ( ) ( )
3 3 3 0x y z
+ + =
, in
then find
( )
( )
,,
,,
u v w
x y z
.
6. If
1 1 2 3 4 1 2 2 3 4 1 2 3 3 4 1 2 3 4 4
u x x x x ,u u x x x ,u u u x x ,u u u u x ,= + + + = + + = + =
Then prove that:
( )
( )
1 2 3 4 32
1 2 3
1 2 3 4
x ,x ,x ,x u u u
u ,u ,u ,u
=
.
7. Find the extreme values of function the functions:
(i)
( )
2 2 3
, 4 3u x y y xy x x= + + +
(ii)
33
3.u x y axy= +
(iii)
( )
311
,f x y xy a xy

= + +


(iv)
( )
2 2 2 2
, 5 8 5u x y x y x xy y=
(v)
( )
, sin sin sin( ).u x y x y x y=+
ASSIGNMENT SHEET-03

Partial preview of the text

Download Assignment on Engineering mathematics and more Assignments Mathematics in PDF only on Docsity!

bf^ Course:^ B.Tech.^ Subject:^ Engineering Mathematics-I^ Code:^ TMA-^101

  1. If u = xyz,v = xy + yz + zx,w = x + y + z.

The prove that: (^ )

u,v,w (^) x y y z z x x, y,z

  1. If 1 2 3 2 1 3 3 2 1 1 2 3

y x x^ , y x x^ , y x x x x x

The prove that: (^ )

1 2 3 1 2 3

y , y , y 4 x ,x ,x

  1. If u = xy + yz + zx,v = x^2 + y^2 + z ,w^2 = x + y + z, determine whether there is a functional relationship between u , v and w and if so, find it.
  2. If u^3 + v^3 = x + y,v^2 + u^2 = x^3 + y^3

The prove that: (^ )

2 2 2

u,v^ y^ x x, y uv u v

5. If u , v and w are the roots of the equation ( − x ) 3 + ( − y ) 3 + ( − z )^3 = 0 , in then find (^ )

( )

u v w x y z

  1. If u 1 (^) = x 1 (^) + x 2 (^) + x 3 (^) + x ,u u 4 1 2 (^) = x 2 (^) + x 3 (^) + x ,u u u 4 1 2 3 (^) = x 3 (^) + x ,u u u u 4 1 2 3 4 (^) = x , 4

Then prove that: (^ )

(^1 2 3 4 13 22 ) 1 2 3 4

x ,x ,x ,x u u u u ,u ,u ,u

  1. Find the extreme values of function the functions:

(i) u x y ( , )= y^2^ + 4 xy + 3 x^2^ + x^3

(ii) u = x^3 + y^3 − 3 axy.

(iii) f ( x y , ) xy a^3 1

x y

= + ^ + 

(iv) u x y ( , )= x y^2^2 − 5 x^2 − 8 xy − 5 y^2

(v) u x y ( , )= sin x sin y sin( x + y ).

ASSIGNMENT SHEET- 03