















Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Some concept of Wind Engineering are Aeroelastic Effects, Along-Wind Dynamic Response, Antennas and Open-Frame Structures, Atmospheric Boundary Layers and Turbulence, Atmospheric Boundary, Basic Bluff-Body Aerodynamics. Main points of this lecture are: Atmospheric Boundary Layers and Turbulence, Layers and Turbulence, Turbulence, Topography, Change of Terrain, Atmospheric Boundary, Gust Factors, Gust Speeds, Ratio of the Maximum, Density Function
Typology: Slides
1 / 23
This page cannot be seen from the preview
Don't miss anything!
At 10 metres height in open country, G 1.45 ( higher latitude gales)
In hurricanes, G 1.55 to 1.
As discussed in Lecture 5, the spectral density function provides a description of the frequency content of wind velocity fluctuations
Empirical forms based on full scale measurements have been proposed for all 3 velocity components
These are usually expressed in a non-dimensional form, e.g. :
2 u
u
Sometimes u*^2 orU^2 is used in the denominator
von Karman spectrum :
at high frequencies, n.Su(n) n-2/3, or Su(n) n-5/
2 2 5 / 6 1 70. 8
4
. ( )
U
n
U
n nS n
u
u
u
u l
l
at zero frequencies, Su(0) 4 u^2 lu /U
The latter is a property of turbulence in a frequency range known as the inertial sub-range
zero frequency limit :
(von Karman spectrum satisfies this)
From Lecture 5 :
2 n
i ^
(^)
since auto-correlation is a symmetrical function of : u(-) = u()
(^) Su (n) 4 (^) u^20 R u( )e i^2 n^ dτ
Su (0) 4 (^) u^20 R u( )dτ^ setting n = 0
1
2
Busch and Panofsky spectrum for vertical component w(t):
Length scale in this case is height above ground, z Maximum value of 0.258 occurs at n.z/U of 0.
2 ^ 5/ w
w
U
1 11.16 nz
U
2.15 nz σ
n.S (n)
0.01 0.10 1.00 10.
Busch & Panofsky
n.Sw(n)/ w^2
n.z / U
As discussed in Lecture 5, the normalized co-spectrum represents a frequency-dependent correlation coefficient :
It is important use is to determine the strength of wind forces at the natural frequency of a structure, and hence the resonant response
Exponential decay function :
As separation distance z increases, or frequency, n, decreases, co-spectrum (z,n) decreases
U
k.n. z ρ(Δz,n) exp
Disadvantages : 1) goes to 1 as n0, even for very large z
Shallow topography : no separation of flow (follows contours)
Predictable from computer models, wind-tunnel models
shallow escarpment
shallow hill or ridge
Steep topography : separation of flow occurs
Less predictable from computer models, wind-tunnel models OK at large enough scale
steep escarpment
separation
steep escarpment
steep hill or ridge
separation separation
denoted by Mt : (^) :
Can be greater or less than 1. Codes only give values > 1
Wind speed at height z abovethe flat groundupwind
Wind speed at height z abovethe feature Topographic Multiplier , ,
, ,
Mt for mean wind speeds
Mˆ t for peak gust wind speeds (^) :
ASCE-7 : Kz,t = (1 + K 1 K 2 K 3 )^2 Mt = 1 + K 1 K 2 K 3
is the upwind slope = H/2Lu
k is a constant for a given type of topography
s is a position factor
Mt 1 ks
Lu
H /
crest
= 1.0 at crest <1 upwind and downwind, and with increasing height
Assume that standard deviation of longitudinal turbulence, u, is unchanged as the wind flow passes over the hill
u
t u t (^) U gσ
U.M gσ Mˆ
u
u U gσ
U.(1 ks ) gσ
u
u
u
U gσ
1 gσ
ks (U gσ ). 1
1 gσ
ks 1 u
1 gσ
k in which, k u
Can be treated approximately by taking an effective slope, ' = 0.
then same formulae are used, i.e. :
However these formulae are less accurate than those for shallow hills and do not account for separations at crest of escarpment or on lee side of a hill or ridge