Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Basic Statistics Formulas, Cheat Sheet of Statistics

Formulas on Population Measures, Sampling, Probability, Sample Proportions, Chi-Square Statistic, Linear Regression

Typology: Cheat Sheet

2020/2021
On special offer
30 Points
Discount

Limited-time offer


Uploaded on 04/27/2021

markzck
markzck 🇺🇸

4.2

(10)

253 documents

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Basic Statistics Formulas
Population Measures
Mean µ=1
nXxi(1)
Variance σ2=1
nX(xix)2(2)
Standard Deviation σ=r1
nX(xix)2(3)
Sampling
Sample mean x=1
nXxi(4)
Sample variance s2
x=1
n1X(xix)2(5)
Std. Deviation sx=r1
n1X(xix)2(6)
z-score z=xµ
σ(7)
Correlation r=
1
n1
n
X
i=1 (xix)
sx(yiy)
sy(8)
Linear Regression
Line ˆy=a+bx (9)
b=rsy
sx
, a =ybx (10)
s=v
u
u
t
1
n2
n
X
i=1
(yiˆy)2(11)
SEb=s
v
u
u
t
n
X
i=1
(xix)2
(12)
To test H0:b= 0,use t=b
SEb
(13)
CI =b±tS Eb(14)
Probability
P(Aor B) = P(A) + P(B)P(Aand B) (15)
P(not A) = 1 P(A) (16)
P(Aand B) = P(A)P(B) (independent) (17)
P(B|A) = P(Aand B)/P (A) (18)
0! = 1; n! = 1 ×2×3· · · × (n1) ×n(19)
n
k=n!
k!(nk)! (20)
Binomial Distribution :
P(X=k) = n
kpk(1 p)nk(21)
µ=np, σ =pnp(1 p) (22)
One-Sample z-statistic
To test H0:µ=µ0usez=zµ0
σ/n(23)
Confidence Interval for µ=x±zσ
n(24)
Margin of Error ME =zσ
n(25)
Minimum sample size nzσ
M E 2
(26)
One-Sample t-statistic
SEM =sx
n, t =xµ
sx/n(27)
Confidence Interval = x±tsx
n(28)
Two-Sample t-statistic
t=x1x2
ss2
1
n1
+s2
2
n2
(29)
Conf. Interval = (x1x2)±tss2
1
n1
+s2
2
n2
(30)
Sample Proportions
µˆp=p, σ ˆp=rp(1 p)
n(31)
Conf. Int. = ˆp±z(SE) (32)
SE = rˆp(1 ˆp)
n(33)
sample size n > z
M E 2
p(1 p) (34)
To test H0:p=p0,use z=ˆpp0
rp0(1 p0)
n
(35)
Two-Sample Proportions
SE =sˆp1(1 ˆp1)
n1
+ˆp2(1 ˆp2)
n2
(36)
CI = ( ˆp1ˆp2)±z(SE) (37)
To test H0:p1=p2,use (38)
z=ˆp1ˆp2
sˆp(1 ˆp)1
n1
+1
n2
(39)
ˆp=X1+X2
n1+n2
, Xi= successes (40)
Chi-Square Statistic
χ2=
n
X
i=1
(oiei)2
ei
(41)
oi= observed, ei= expected
Central Limit Theorem
sxσ
nas n (42)
2013 B.E. Shapiro. This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (BY-NC-SA 3.0).
Last revised May 9, 2016.
pf2
Discount

On special offer

Partial preview of the text

Download Basic Statistics Formulas and more Cheat Sheet Statistics in PDF only on Docsity!

Basic Statistics Formulas

Population Measures

Mean μ =

n

xi (1)

Variance σ

n

(xi − x)

Standard Deviation σ =

n

(xi − x)^2 (3)

Sampling

Sample mean x =

n

xi (4)

Sample variance s

x =^

n − 1

(xi − x)

Std. Deviation sx =

n − 1

(xi − x)^2 (6)

z-score z =

x − μ

Correlation r =

n − 1

∑^ n

i=

(xi − x)

sx

(yi − y)

sy

Linear Regression

Line ˆy = a + bx (9)

b = r

sy

sx

, a = y − bx (10)

s =

n − 2

∑^ n

i=

(yi − ˆy)^2 (11)

SEb =

s

∑^ n

i=

(xi − x)

To test H 0 : b = 0, use t =

b

SEb

CI = b ± t

SEb (14)

Probability

P (A or B) = P (A) + P (B) − P (A and B) (15)

P (not A) = 1 − P (A) (16)

P (A and B) = P (A)P (B) (independent) (17)

P (B|A) = P (A and B)/P (A) (18)

0! = 1; n! = 1 × 2 × 3 · · · × (n − 1) × n (19)

n

k

n!

k!(n − k)!

Binomial Distribution :

P (X = k) =

n

k

p

k

(1 − p)

n−k

μ = np, σ =

np(1 − p) (22)

One-Sample z-statistic

To test H 0 : μ = μ 0 usez =

z − μ 0

n

Confidence Interval for μ = x ± z

n

Margin of Error M E = z

n

Minimum sample size n ≥

[

z

M E

] 2

One-Sample t-statistic

SEM =

sx

n

, t =

x − μ

sx/

n

Confidence Interval = x ± t

∗ sx

n

Two-Sample t-statistic

t =

x 1 − x 2

s

n 1

s

n 2

Conf. Interval = (x 1 − x 2 ) ± t

s^21

n 1

s^22

n 2

Sample Proportions

μpˆ = p, σpˆ =

p(1 − p)

n

Conf. Int. = ˆp ± z

(SE) (32)

SE =

pˆ(1 − pˆ)

n

sample size n >

[

z

M E

] 2

p

(1 − p

To test H 0 : p = p 0 , use z =

pˆ − p 0

p 0 (1 − p 0 )

n

Two-Sample Proportions

SE =

p ˆ 1 (1 − pˆ 1 )

n 1

pˆ 2 (1 − ˆp 2 )

n 2

CI = (ˆp 1 − pˆ 2 ) ± z

(SE) (37)

To test H 0 : p 1 = p 2 , use (38)

z =

pˆ 1 − pˆ 2

p ˆ(1 − pˆ)

n 1

n 2

pˆ =

X 1 + X 2

n 1 + n 2

, Xi = successes (40)

Chi-Square Statistic

∑^ n

i=

(oi − ei)

ei

oi = observed, ei = expected

Central Limit Theorem

sx →

n

as n → ∞ (42)

2013 B.E. Shapiro. This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (BY-NC-SA 3.0).

Last revised May 9, 2016.

Table Entry

Standard Normal Cumulative Proportions (below)

Tail Area

1 - C 2 Area C

t-Distribution Critical Values (to right) t-Distribution Cumulative Proportions Confidence Level C Chi-Square Distribution Critical Values

Probability p

Χ

 - 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0. Standard Normal Cumulative Proportions 
  • -3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.
  • -3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.
  • -3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.
  • -3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0. - -3 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.
  • -2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.
  • -2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.
  • -2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.
  • -2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.
  • -2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.
  • -2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.
  • -2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.
  • -2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.
  • -2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0. - -2 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.
  • -1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.
  • -1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.
  • -1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.
  • -1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.
  • -1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.
  • -1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.
  • -1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.
  • -1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.
  • -1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0. - -1 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.
  • -0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.
  • -0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.
  • -0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.
  • -0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.
  • -0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.
  • -0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.
  • -0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.
  • -0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.
  • -0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0. - 0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0. - 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0. - 0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.
    • 0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.
    • 0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.
    • 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.
    • 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.
    • 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.
    • 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.
    • 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.
    • 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.
    • 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0. - 1 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.
    • 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.
    • 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.
    • 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.
    • 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.
    • 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.
    • 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.
    • 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.
    • 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.
    • 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0. - 2 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.
    • 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.
    • 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.
    • 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.
    • 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.
    • 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.
    • 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.
    • 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.
    • 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.
    • 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0. - 3 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.
    • 3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.
    • 3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.
    • 3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.
    • 3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0. - 1 1 1.376 1.963 3.078 6.314 12.706 15.895 31.821 63.657 318. df 50% 60% 70% 80% 90% 95% 96% 98% 99% 99.8% - 2 0.816 1.061 1.386 1.886 2.92 4.303 4.849 6.965 9.925 22. - 3 0.765 0.978 1.25 1.638 2.353 3.182 3.482 4.541 5.841 10. - 4 0.741 0.941 1.19 1.533 2.132 2.776 2.999 3.747 4.604 7. - 5 0.727 0.92 1.156 1.476 2.015 2.571 2.757 3.365 4.032 5. - 6 0.718 0.906 1.134 1.44 1.943 2.447 2.612 3.143 3.707 5. - 7 0.711 0.896 1.119 1.415 1.895 2.365 2.517 2.998 3.499 4. - 8 0.706 0.889 1.108 1.397 1.86 2.306 2.449 2.896 3.355 4. - 9 0.703 0.883 1.1 1.383 1.833 2.262 2.398 2.821 3.25 4. - 10 0.7 0.879 1.093 1.372 1.812 2.228 2.359 2.764 3.169 4. - 11 0.697 0.876 1.088 1.363 1.796 2.201 2.328 2.718 3.106 4. - 12 0.695 0.873 1.083 1.356 1.782 2.179 2.303 2.681 3.055 3. - 13 0.694 0.87 1.079 1.35 1.771 2.16 2.282 2.65 3.012 3. - 14 0.692 0.868 1.076 1.345 1.761 2.145 2.264 2.624 2.977 3. - 15 0.691 0.866 1.074 1.341 1.753 2.131 2.249 2.602 2.947 3. - 16 0.69 0.865 1.071 1.337 1.746 2.12 2.235 2.583 2.921 3. - 17 0.689 0.863 1.069 1.333 1.74 2.11 2.224 2.567 2.898 3. - 18 0.688 0.862 1.067 1.33 1.734 2.101 2.214 2.552 2.878 3. - 19 0.688 0.861 1.066 1.328 1.729 2.093 2.205 2.539 2.861 3. - 20 0.687 0.86 1.064 1.325 1.725 2.086 2.197 2.528 2.845 3. - 21 0.686 0.859 1.063 1.323 1.721 2.08 2.189 2.518 2.831 3. - 22 0.686 0.858 1.061 1.321 1.717 2.074 2.183 2.508 2.819 3. - 23 0.685 0.858 1.06 1.319 1.714 2.069 2.177 2.5 2.807 3. - 24 0.685 0.857 1.059 1.318 1.711 2.064 2.172 2.492 2.797 3. - 25 0.684 0.856 1.058 1.316 1.708 2.06 2.167 2.485 2.787 3. - 30 0.683 0.854 1.055 1.31 1.697 2.042 2.147 2.457 2.75 3. - 40 0.681 0.851 1.05 1.303 1.684 2.021 2.123 2.423 2.704 3. - 50 0.679 0.849 1.047 1.299 1.676 2.009 2.109 2.403 2.678 3. - 60 0.679 0.848 1.045 1.296 1.671 2 2.099 2.39 2.66 3. - 80 0.678 0.846 1.043 1.292 1.664 1.99 2.088 2.374 2.639 3. - 100 0.677 0.845 1.042 1.29 1.66 1.984 2.081 2.364 2.626 3. - 1000 0.675 0.842 1.037 1.282 1.646 1.962 2.056 2.33 2.581 3. - z∗ 0.674 0.842 1.036 1.282 1.645 1.960 2.054 2.326 2.576 3. - 1-Sided P 0.25 0.2 0.15 0.1 0.05 0.025 0.02 0.01 0.005 0. - 2-Sided P 0.5 0.4 0.3 0.2 0.1 0.05 0.04 0.02 0.01 0. - df 0.25 0.20 0.10 0.05 0.025 0.02 0.01 0.005 0.0025 0. p - 1 1.32 1.64 2.71 3.84 5.02 5.41 6.63 7.88 9.14 10. - 2 2.77 3.22 4.61 5.99 7.38 7.82 9.21 10.60 11.98 13. - 3 4.11 4.64 6.25 7.81 9.35 9.84 11.34 12.84 14.32 16. - 4 5.39 5.99 7.78 9.49 11.14 11.67 13.28 14.86 16.42 18. - 5 6.63 7.29 9.24 11.07 12.83 13.39 15.09 16.75 18.39 20. - 6 7.84 8.56 10.64 12.59 14.45 15.03 16.81 18.55 20.25 22. - 7 9.04 9.80 12.02 14.07 16.01 16.62 18.48 20.28 22.04 24. - 8 10.22 11.03 13.36 15.51 17.53 18.17 20.09 21.95 23.77 26. - 9 11.39 12.24 14.68 16.92 19.02 19.68 21.67 23.59 25.46 27. - 10 12.55 13.44 15.99 18.31 20.48 21.16 23.21 25.19 27.11 29. - 11 13.70 14.63 17.28 19.68 21.92 22.62 24.72 26.76 28.73 31. - 12 14.85 15.81 18.55 21.03 23.34 24.05 26.22 28.30 30.32 32. - 13 15.98 16.98 19.81 22.36 24.74 25.47 27.69 29.82 31.88 34. - 14 17.12 18.15 21.06 23.68 26.12 26.87 29.14 31.32 33.43 36. - 15 18.25 19.31 22.31 25.00 27.49 28.26 30.58 32.80 34.95 37. - 16 19.37 20.47 23.54 26.30 28.85 29.63 32.00 34.27 36.46 39. - 17 20.49 21.61 24.77 27.59 30.19 31.00 33.41 35.72 37.95 40. - 18 21.60 22.76 25.99 28.87 31.53 32.35 34.81 37.16 39.42 42. - 19 22.72 23.90 27.20 30.14 32.85 33.69 36.19 38.58 40.88 43. - 20 23.83 25.04 28.41 31.41 34.17 35.02 37.57 40.00 42.34 45. - 21 24.93 26.17 29.62 32.67 35.48 36.34 38.93 41.40 43.78 46. - 22 26.04 27.30 30.81 33.92 36.78 37.66 40.29 42.80 45.20 48. - 23 27.14 28.43 32.01 35.17 38.08 38.97 41.64 44.18 46.62 49. - 24 28.24 29.55 33.20 36.42 39.36 40.27 42.98 45.56 48.03 51. - 25 29.34 30.68 34.38 37.65 40.65 41.57 44.31 46.93 49.44 52. - 30 34.80 36.25 40.26 43.77 46.98 47.96 50.89 53.67 56.33 59. - 40 45.62 47.27 51.81 55.76 59.34 60.44 63.69 66.77 69.70 73. - 50 56.33 58.16 63.17 67.50 71.42 72.61 76.15 79.49 82.66 86. - 60 66.98 68.97 74.40 79.08 83.30 84.58 88.38 91.95 95.34 99. - 80 88.13 90.41 96.58 101.88 106.63 108.07 112.33 116.32 120.10 124. - 100 109.14 111.67 118.50 124.34 129.56 131.14 135.81 140.17 144.29 149.