Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Business Calculus Cheat Sheet, Cheat Sheet of Business Mathematics

Formula sheet for marginal analysis, elasticity of demand, business applications of integrals in Mth 270 at JTCC

Typology: Cheat Sheet

2020/2021

Uploaded on 04/23/2021

eknathia
eknathia ๐Ÿ‡บ๐Ÿ‡ธ

4.4

(26)

264 documents

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Business Calculus (MTH 270) Quick Reference
Calculus I (MTH 173) and Business Calculus (MTH 270) are similar in the material covered, including limits, first and
second derivative tests, and optimizations.
The major differences between Calculus I and Business Calculus are:
โ— Business Calculus applies calculus to various business-related problems.
โ— Business Calculus DOES NOT cover derivatives or anti-derivatives of trig functions or inverse trig functions.
If you have taken Calculus I, you are able to assist a student in Business Calculus, and vice versa.
Marginal Analysis (p. 163)
โ— Cost, Revenue and Profit
โ—‹
Total Cost = C(x)
โ—‹
Total Revenue = R(x)
โ—‹
Total Profit = P(x) = R(x) - C(x)
โ— Marginal Cost, Revenue and Profit
โ—‹
Marginal Cost = Cโ€™(x)
โ—‹
Marginal Revenue = Rโ€™(x)
โ—‹
Marginal Profit = Pโ€™(x) = Rโ€™(x) - Cโ€™(x)
โ—‹ The marginal cost is the instantaneous rate of change of the cost relative to the level of production, ๐‘ฅ.
โ— Exact Cost, Revenue and Profit
โ—‹ The exact cost, revenue or profit are the cost, revenue or profit of producing the (๐‘ฅ + 1)st item.
Exact Cost = C(x+1) - C(x)
โ—‹ The marginal cost approximates the cost of the (๐‘ฅ + 1)st item produced.
Marginal Cost โ‰ˆ Exact Cost
Cโ€™(x) โ‰ˆ C(x+1) - C(x)
โ— Average Cost, Revenue and Profit
โ—‹ ๐ด๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ ๐ถ๐‘œ๐‘ ๐‘ก = ๐ถ๎ชง(๐‘ฅ) = ๐ถ(๐‘ฅ)
๐‘ฅ
โ—‹ ๐‘€๐‘Ž๐‘Ÿ๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐ด๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ ๐ถ๐‘œ๐‘ ๐‘ก = ๐ถ๎ชงโ€ฒ(๐‘ฅ) = ๐‘‘
๐‘‘๐‘ฅ ๐ถ๎ชง(๐‘ฅ)
โ—‹ ๐ด๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ ๐‘…๐‘’๐‘ฃ๐‘’๐‘›๐‘ข๐‘’ = ๐‘…
๏Œค(๐‘ฅ) = ๐‘…(๐‘ฅ)
๐‘ฅ
โ—‹ ๐‘€๐‘Ž๐‘Ÿ๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐ด๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ ๐‘…๐‘’๐‘ฃ๐‘’๐‘›๐‘ข๐‘’ = ๐‘…
๏Œคโ€ฒ(๐‘ฅ) = ๐‘‘
๐‘‘๐‘ฅ ๐‘…
๏Œค(๐‘ฅ)
โ—‹ ๐ด๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ ๐‘ƒ๐‘Ÿ๐‘œ๐‘“๐‘–๐‘ก = ๐‘ƒ
๏Œค(๐‘ฅ) = ๐‘ƒ(๐‘ฅ)
๐‘ฅ
โ—‹ ๐‘€๐‘Ž๐‘Ÿ๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐ด๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ ๐‘ƒ๐‘Ÿ๐‘œ๐‘“๐‘–๐‘ก = ๐‘ƒ
๏Œคโ€ฒ(๐‘ฅ) = ๐‘‘
๐‘‘๐‘ฅ ๐‘ƒ
๏Œค(๐‘ฅ)
Elasticity of Demand (p. 226)
โ— Relative Rate of Change
โ—‹ ๐‘…๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘…๐‘Ž๐‘ก๐‘’ ๐‘œ๐‘“ ๐ถโ„Ž๐‘Ž๐‘›๐‘”๐‘’ = ๐‘‘
๐‘‘๐‘ฅ ๐‘™๐‘›[๐‘“(๐‘ฅ)] = ๐‘“โ€ฒ(๐‘ฅ)
๐‘“(๐‘ฅ)
โ—‹ ๐‘ƒ๐‘’๐‘Ÿ๐‘๐‘’๐‘›๐‘ก๐‘Ž๐‘”๐‘’ ๐‘…๐‘Ž๐‘ก๐‘’ ๐‘œ๐‘“ ๐ถโ„Ž๐‘Ž๐‘›๐‘”๐‘’ = ๐‘…๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘…๐‘Ž๐‘ก๐‘’ ๐‘œ๐‘“ ๐ถโ„Ž๐‘Ž๐‘›๐‘”๐‘’ ๐‘ฅ 100%
โ— Elasticity of Demand
โ—‹ Price, ๐‘
โ—‹ Demand, ๐‘ฅ = ๐‘“(๐‘)
โ—‹ ๐ธ๐‘™๐‘Ž๐‘ ๐‘ก๐‘–๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐ท๐‘’๐‘š๐‘Ž๐‘›๐‘‘ = ๐ธ(๐‘) = โˆ’๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘Ÿ๐‘Ž๐‘ก๐‘’ ๐‘œ๐‘“ ๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘’๐‘š๐‘Ž๐‘›๐‘‘
๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘Ÿ๐‘Ž๐‘ก๐‘’ ๐‘œ๐‘“ ๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’ ๐‘œ๐‘“ ๐‘๐‘Ÿ๐‘–๐‘๐‘’
โ—‹ ๐ธ(๐‘) = โˆ’๐‘ ๐‘“โ€ฒ(๐‘)
๐‘“(๐‘)
pf2

Partial preview of the text

Download Business Calculus Cheat Sheet and more Cheat Sheet Business Mathematics in PDF only on Docsity!

Business Calculus (MTH 270) Quick Reference

Calculus I (MTH 173) and Business Calculus (MTH 270) are similar in the material covered, including limits, first and second derivative tests, and optimizations.

The major differences between Calculus I and Business Calculus are: โ— Business Calculus applies calculus to various business-related problems. โ— Business Calculus DOES NOT cover derivatives or anti-derivatives of trig functions or inverse trig functions.

If you have taken Calculus I, you are able to assist a student in Business Calculus, and vice versa.

Marginal Analysis (p. 163) โ— Cost, Revenue and Profit

โ—‹ Total Cost = C(x)

โ—‹ Total Revenue = R(x)

โ—‹ Total Profit = P(x) = R(x) - C(x)

โ— Marginal Cost, Revenue and Profit

โ—‹ Marginal Cost = Cโ€™(x)

โ—‹ Marginal Revenue = Rโ€™(x)

โ—‹ Marginal Profit = Pโ€™(x) = Rโ€™(x) - Cโ€™(x)

โ—‹ The marginal cost is the instantaneous rate of change of the cost relative to the level of production, ๐‘ฅ.

โ— Exact Cost, Revenue and Profit โ—‹ The exact cost, revenue or profit are the cost, revenue or profit of producing the (๐‘ฅ + 1)st^ item.

Exact Cost = C(x+1) - C(x)

โ—‹ The marginal cost approximates the cost of the (๐‘ฅ + 1)st^ item produced.

Marginal Cost โ‰ˆ Exact Cost

Cโ€™(x) โ‰ˆ C(x+1) - C(x)

โ— Average Cost, Revenue and Profit โ—‹ ๐ด๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ ๐ถ๐‘œ๐‘ ๐‘ก = ๐ถฬ…(๐‘ฅ) = ๐ถ(๐‘ฅ)๐‘ฅ โ—‹ ๐‘€๐‘Ž๐‘Ÿ๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐ด๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ ๐ถ๐‘œ๐‘ ๐‘ก = ๐ถฬ…โ€ฒ(๐‘ฅ) = (^) ๐‘‘๐‘ฅ๐‘‘ ๐ถฬ…(๐‘ฅ) โ—‹ ๐ด๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ ๐‘…๐‘’๐‘ฃ๐‘’๐‘›๐‘ข๐‘’ = ๐‘…ฬ…(๐‘ฅ) = ๐‘…(๐‘ฅ)๐‘ฅ โ—‹ ๐‘€๐‘Ž๐‘Ÿ๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐ด๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ ๐‘…๐‘’๐‘ฃ๐‘’๐‘›๐‘ข๐‘’ = ๐‘…ฬ…โ€ฒ(๐‘ฅ) = (^) ๐‘‘๐‘ฅ๐‘‘ ๐‘…ฬ…(๐‘ฅ) โ—‹ ๐ด๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ ๐‘ƒ๐‘Ÿ๐‘œ๐‘“๐‘–๐‘ก = ๐‘ƒฬ…(๐‘ฅ) = ๐‘ƒ(๐‘ฅ)๐‘ฅ โ—‹ ๐‘€๐‘Ž๐‘Ÿ๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐ด๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ ๐‘ƒ๐‘Ÿ๐‘œ๐‘“๐‘–๐‘ก = ๐‘ƒฬ…โ€ฒ(๐‘ฅ) = (^) ๐‘‘๐‘ฅ๐‘‘ ๐‘ƒฬ…(๐‘ฅ)

Elasticity of Demand (p. 226)

โ— Relative Rate of Change โ—‹ ๐‘…๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘…๐‘Ž๐‘ก๐‘’ ๐‘œ๐‘“ ๐ถโ„Ž๐‘Ž๐‘›๐‘”๐‘’ = (^) ๐‘‘๐‘ฅ๐‘‘ ๐‘™๐‘›[๐‘“(๐‘ฅ)] = ๐‘“โ€ฒ(๐‘ฅ)๐‘“(๐‘ฅ) โ—‹ ๐‘ƒ๐‘’๐‘Ÿ๐‘๐‘’๐‘›๐‘ก๐‘Ž๐‘”๐‘’ ๐‘…๐‘Ž๐‘ก๐‘’ ๐‘œ๐‘“ ๐ถโ„Ž๐‘Ž๐‘›๐‘”๐‘’ = ๐‘…๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘…๐‘Ž๐‘ก๐‘’ ๐‘œ๐‘“ ๐ถโ„Ž๐‘Ž๐‘›๐‘”๐‘’ ๐‘ฅ 100%

โ— Elasticity of Demand โ—‹ Price, ๐‘ โ—‹ Demand, ๐‘ฅ = ๐‘“(๐‘) โ—‹ ๐ธ๐‘™๐‘Ž๐‘ ๐‘ก๐‘–๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐ท๐‘’๐‘š๐‘Ž๐‘›๐‘‘ = ๐ธ(๐‘) = โˆ’ ๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘Ÿ๐‘Ž๐‘ก๐‘’ ๐‘œ๐‘“ ๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘’๐‘š๐‘Ž๐‘›๐‘‘๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘Ÿ๐‘Ž๐‘ก๐‘’ ๐‘œ๐‘“ ๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’ ๐‘œ๐‘“ ๐‘๐‘Ÿ๐‘–๐‘๐‘’

โ—‹ ๐ธ(๐‘) = โˆ’ ๐‘ ๐‘“โ€ฒ(๐‘)๐‘“(๐‘)

๐‘ฌ(๐’‘) Demand Interpretation Revenue

0 < ๐ธ(๐‘) < 1 Inelastic Change in price creates a smaller percentage change in demand.

Price increases, Revenue increases.

๐ธ(๐‘) > 1 Elastic Change in price creates a larger percentage change in demand.

Price increases, Revenue decreases

๐ธ(๐‘) = 1 Unit Change in price creates the same percentage change in demand.

N/A

Business Applications of Integrals (p. 391)

โ— Probability Density Functions โ—‹ Probability density functions must satisfy the following: โ–  ๐‘“(๐‘ฅ) > 0 for all real values of ๐‘ฅ โ–  The area under the graph of ๐‘“(๐‘ฅ) over the interval (โˆ’โˆž, โˆž) is exactly 1. โ–  If [๐‘, ๐‘‘] is a subinterval of (โˆ’โˆž, โˆž), then the probability of ๐‘ฅ being within [๐‘, ๐‘‘] is equal to the definite integral of the probability density function ๐‘“(๐‘ฅ) on the interval [๐‘, ๐‘‘]. โ–  ๐‘๐‘Ÿ๐‘œ๐‘๐‘Ž๐‘๐‘–๐‘™๐‘–๐‘ก๐‘ฆ( ๐‘ โ‰ค ๐‘ฅ โ‰ค ๐‘‘) = โˆซ๐‘ ๐‘‘๐‘“(๐‘ฅ)๐‘‘๐‘ฅ โ—‹ Normal Probability Density Function (The Bell Curve)

โ–  ๐‘“(๐‘ฅ) = ๐œŽโˆš2๐œ‹^1 ๐‘’โˆ’

(๐‘ฅโˆ’๐œ‡)^2 2๐œŽ^2

โ— Continuous Income Stream โ—‹ ๐‘“(๐‘ก) is the flow of a continuous income stream at a time, ๐‘ก. โ—‹ Total income during a period from ๐‘ก = ๐‘Ž to ๐‘ก = ๐‘ is equal to the definite integral of ๐‘“(๐‘ก) on the interval [๐‘Ž, ๐‘]. โ–  ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐ผ๐‘›๐‘๐‘œ๐‘š๐‘’ = โˆซ๐‘Ž ๐‘๐‘“(๐‘ก)๐‘‘๐‘ก โ—‹ Future Value of a Continuous Income Stream at the End of ๐‘‡ Years: โ–  ๐น๐‘‰ = โˆซ 0 ๐‘‡ ๐‘“(๐‘ก)๐‘’๐‘Ÿ(๐‘‡โˆ’๐‘ก)๐‘‘๐‘ก = ๐‘’๐‘Ÿ๐‘‡^ โˆซ 0 ๐‘‡๐‘“(๐‘ก)๐‘’โˆ’๐‘Ÿ๐‘ก๐‘‘๐‘ก

โ— Consumer and Producer Surplus โ—‹ Consumer Surplus is the amount a consumer believes they saved when paying for a product they believe they underpaid for. โ—‹ Consumer Surplus at a price level, ๐‘ฬ…, and a price-demand equation, ๐‘ = ๐ท(๐‘ฅ): โ–  ๐ถ๐‘† = โˆซ [๐ท(๐‘ฅ) โˆ’ ๐‘ฬ…]๐‘‘๐‘ฅ 0 ๐‘ฅฬ… โ—‹ Producerโ€™s Surplus is the additional money that suppliers gain when they sell units at a higher price than they would be willing to sell it for. โ—‹ Producerโ€™s Surplus at a price level, ๐‘ฬ…, and a price-supply equation, ๐‘ = ๐‘†(๐‘ฅ): โ–  ๐‘ƒ๐‘† = โˆซ [๐‘ฬ… โˆ’ ๐‘†(๐‘ฅ)]๐‘‘๐‘ฅ 0 ๐‘ฅฬ