Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Calculus 1 formula sheet, Cheat Sheet of Calculus

Calculus formula sheet in define the derivatives functions, alternative forms of derivative, differentiability and chain rule.

Typology: Cheat Sheet

2021/2022

Uploaded on 02/07/2022

alexey
alexey 🇺🇸

4.7

(20)

326 documents

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Calculus I
Formula Sheet
Chapter 3
Section 3.1
1. Definition of the derivative of a function:
( )
0
( ) ()
lim
x
fx x fx
fx x
∆→
+∆
=
2. Alternative form of the derivative at
:xc=
( )
() ()
lim
xc
fx fc
fc xc
=
3. Differentiability
Continuity
Section 3.2
4.
[ ]
0
dc
dx =
5.
[ ]
1
dx
dx =
6.
1nn
dx nx
dx

=

7.
( ) ( )
dcf x cf x
dx
=


8.
9.
[ ]
() () () ()
dfxgx fxgx
dx ′′
−=−
10.
[ ]
sin cos
dxx
dx =
11.
[ ]
cos sin
dxx
dx =
12.
xx
dee
dx 
=

13. Free Fall:
200
1
() 2
s t gt v t s= ++
Feet: -32 Meters: -9.8
14. Velocity:
( )
()vt st
=
15. Find equation of tangent line to curve at
:xc=
a. Equation of Line: need point and slope
b. Point:
( )
( )
,cfc
Slope:
()m fc
=
c. Point-Slope form:
( )
11
y y mx x−=
16. Derivative: a) Slope of tangent line
b) Instantaneous rate of change
Section 3.3
17.
[ ]
( ) ( ) () ( )
() ()
df x gx f xg x g x f x
dx ′′
⋅= +
18.
( ) ( ) ( ) ( )
[ ]
2
()
() ()
gx f x f xg x
d fx
dx g x gx
′′

=


19.
[ ]
2
tan sec
dxx
dx =
20.
[ ]
sec sec tan
dx xx
dx =
21.
[ ]
2
cot csc
dxx
dx =
22.
[ ]
csc csc cot
dx xx
dx =
23. Horizontal Tangent Line:
() 0m fx
= =
Section 3.4
24. Chain Rule:
( ), ( ), dy dy du
y yu u ux dx du dx
= = =
25.
[ ]
1
ln
dx
dx x
=
26. Definition of exponential function to base a:
( )
lnax
x
ae=
27. Definition of logarithmic function to base a:
1
log ln
ln
a
xx
a
=
28.
( )
ln
xx
da aa
dx 
=

29.
[ ]
1
log (ln )
a
dx
dx a x
=
Section 3.5
30. Implicit Differentiation:
a. Differentiate both sides with respect to x.
b. Isolate
dy
dx
on the left side.
31. Logarithmic Differentiation
a. Take a ln of both sides
b. Use properties of ln to expand
c. Differentiate implicitly
pf2

Partial preview of the text

Download Calculus 1 formula sheet and more Cheat Sheet Calculus in PDF only on Docsity!

Calculus I

Formula Sheet

Chapter 3

Section 3.

  1. Definition of the derivative of a function:

0

lim x

f x x f x f x ∆ → x

  1. Alternative form of the derivative at x =c:

lim x c

f x f c f c → x c

  1. Differentiability ⇒ Continuity

Section 3.

4. [ ] 0

d c dx

5. [ ] 1

d x dx

d (^) n n 1 x n x dx

  =^ −

d c f x c f x dx

8. [ ( ) ( ) ] ( ) ( )

d f x g x f x g x dx

+ = ′^ + ′

9. [ ( ) ( ) ] ( ) ( )

d f x g x f x g x dx

− = ′^ − ′

10. [ sin ] cos

d x x dx

11. [ cos ] sin

d x x dx

d (^) x x e e dx

  1. Free Fall:

2 0 0

s t = − gt + v t +s

Feet: -32 Meters: -9.

14. Velocity: v t( ) =s t′( )

  1. Find equation of tangent line to curve at

x =c :

a. Equation of Line: need point and slope

b. Point: ( c f, ( )c ) Slope: m =f ′( )c

c. Point-Slope form: y − y 1 = m x( −x 1 )

  1. Derivative: a) Slope of tangent line

b) Instantaneous rate of change

Section 3.

17. [ ( ) ( )] ( ) ( ) ( ) ( )

d f x g x f x g x g x f x dx

[ ]

2

d f x^ g^ x^ f^ x^ f^ x g^ x

dx g x (^) g x

 ^ ′^ − ′

19. [ ]

2 tan sec

d x x dx

20. [ sec ] sec tan

d x x x dx

21. [ ]

2 cot csc

d x x dx

22. [ csc ] csc cot

d x x x dx

  1. Horizontal Tangent Line: m = f ′( )x = 0

Section 3.

  1. Chain Rule:

dy dy du y y u u u x dx du dx

25. [ ]

ln

d x dx x

  1. Definition of exponential function to base a:
x ( ln^ a x)

a =e

  1. Definition of logarithmic function to base a:

1 log ln ln

a x^ x a

28. ( ln )

d (^) x x a a a dx

29. [ ]

log (ln )

a

d x dx a x

Section 3.

  1. Implicit Differentiation:

a. Differentiate both sides with respect to x.

b. Isolate

dy

dx

on the left side.

  1. Logarithmic Differentiation

a. Take a ln of both sides

b. Use properties of ln to expand

c. Differentiate implicitly

Section 3.

32. Find ( )

1 f ( )b

a. Formula: ( )

( (^ ))

1 1

f ( )b f f b

− −

b. ( ) ( )

1 f b a f a b

− = ⇒ =

c. Set f ( x )= band solve.

d. Find f ′^ ( x)at the solution found in

the previous step.

e. Apply the formula at the beginning.

33. [ ]

2

arcsin

1

d x dx x

34. [ ]

2

arctan 1

d x dx (^) x

35. [ ]

2

arcsec 1

d x dx (^) x x

36. [ ]

2

arccos 1

d x dx (^) x

37. [ ]

2

arccot 1

d x dx (^) x

38. [ ]

2

arccsc

1

d x dx (^) x x

Section 3.

  1. Related Rate Problems

a. Identify all given and to find

b. Equation

c. Differentiate Implicitly

d. Substitute and solve