Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Calculus 12 Name ______ LG 1 – 3 Worksheet Package, Lecture notes of Calculus

Find the first derivative of each function: a)!!y = 3x2 !5! ... d) How can you use a graphing calculator to check your answers to these types of questions?

Typology: Lecture notes

2021/2022

Uploaded on 08/01/2022

hal_s95
hal_s95 🇵🇭

4.4

(652)

10K documents

1 / 21

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
1
Calculus 12 Name _____________
LG 1 – 3 Worksheet Package
Part A:
1. Find the first derivative of each function:
a)!! y=3x2!5!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!! y=8x!2
c)!! f(x)=6x2!3x+2!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!d)!! y=!x2+6
e)!!g(x)=
!
x3+6x!3!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! f)!!h(x)=5
!
2x4+6x2!3
!
4
g)!!k(x)=1
4x8!2
3x6+2
5x4!3
4
!!!!!!!!!!!!!!!!!h)!! y=6
!
3!8
!
2+24
2. Given y, find
dy
dx
:
a)!! y=4x3!2x+6!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!! y=1
5x5+2
3x3!1
2x2+1
c)!! y=x4!
!
4!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!d)!! y=
!
3x3!3
!
x
3. Solve:
a)!!if !p=4q3+2q2!5!!!!!!!! find !! dp
dq
!=
b)!!if !g(t)=4t3!3t2+6t!!!!! find!g'(t)=
c)!!if !y=2x7!5x+3!!!!!!!!!!! find !y'=
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15

Partial preview of the text

Download Calculus 12 Name ______ LG 1 – 3 Worksheet Package and more Lecture notes Calculus in PDF only on Docsity!

Calculus 12 Name _____________

LG 1 – 3 Worksheet Package

Part A:

  1. Find the first derivative of each function: a )!! y = 3 x^2! 5 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! b )!! y = 8 x! 2 c )!! f ( x ) = 6 x^2! 3 x + 2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! d )!! y =! x^2 + 6 e )!! g ( x ) =! x 3 + 6 x! 3 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! f )!! h ( x ) = 5! 2 x 4 + 6 x 2 ! 3! 4 g )!! k ( x ) =

x 8 !

x 6

x 4 !

!!!!!!!!!!!!!!!!! h )!! y = 6! 3 ! 8! 2

  • 24
  1. Given y, find dy dx

a )!! y = 4 x 3 ! 2 x + 6 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! b )!! y =

x 5

x 3 !

x 2

  • 1 c )!! y = x 4 !! 4 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! d )!! y =! 3 x 3 ! 3! x
  1. Solve: a )!! if! p = 4 q^3 + 2 q^2! 5 !!!!!!!! find !! dp dq

b )!! if! g ( t ) = 4 t 3 ! 3 t 2

  • 6 t !!!!! find! g '( t ) = c )!! if! y = 2 x^7! 5 x + 3 !!!!!!!!!!! find! y ' =
  1. If y = 2 x^3! 3 x + 7 find:

a )!!! y '! at! x =! 2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! b )!!! y '! at! ( 1 ,! 5 )

c )!!! f ( 0 )! and! f '( 0 ) !!!!! d ) How can you use a graphing calculator to check your answers to these types of questions?

  1. Find y ' if: a )!! y = ax^3 + bx^2 + d !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! b )!! y = ax^4! ax^2 + bx c )!! y = 4 ax^5 + kx^3! Cx + D !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! d )!! y = D^2 x^3 + 5 M^3 x^2! 7 !!!!!!
  2. Find dy dp if: a )!! y = 4 p 3 ! 2 p 2
  • 6 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! b )!! y =! 5 p 4
  • 6 p!

c )!! y = 4 mp 4

  • 16 p 2 ! 6 c !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! d )!! y = 6 a 4
  • 8 a 3 ! 2 p 2
  1. If y = 6 x^5! 2 x^2 + 9 x! 3 find: a )!! y '!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! b )!! y ''!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! c )!! y ''' d )!! dy dx !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! e )!! d 2 y dx^2 !!!!!!!!!!!!!!!!!!!!!!!!!!!! f )!! d 3 y dx^3 g )!! dy dx

2 !!!!!!!!!!!!!!!!!!!!!!!!!!!! h )!! dy dx

3 !!!!!!!!!!!!!!!!!!!!!!!!! i )!! y (^8 )

Part B:

  1. Simplify each expression then find y '.

a )!! y = ( 2 x + 1 ) ( 3 x! 5 )!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! b )!! y = ( 2 x! 3 )

2

c )!! y = ( 4 x )

3 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! d )! y = x^2 ( x^3! (^6) )

e )!! y =(! x )

3 ! 3! x !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! f )!! y = x^2! 5 x + 4 x! 1

  1. Rewrite each rational expression using exponents to remove quotients and then find the first derivative. a )!! y =

x 2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! b )!!^ y^ =^!^

x 3 c )!! y =

x^4

x^2

x !! 7 x !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! d )!! y = 4 x 3 !!!

x^2 !+! 7 x ! 5 !!!

x!^4

  1. Rewrite each expression using exponents to remove radicals and quotients, then find the first derivative. a )!! y = 10 x !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! b )!! y = 4 3 x^2 c )!! y =

(^5) x 2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! d )!! y = x !+! 6 x^3 e )!! y =

x

(^3) x

x 4 3 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! e )!! y =

(^5) x

2 x ! 3 3

  1. Use the PRODUCT RULE to find the first derivative. DO NOT simplify answer. a )!! y = ( 3 x + 1 )( 2 x! 5 )!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! b )!! y = 3 x^2 ( 8 x! 3 ) c )!! y = ( 2 x + 1 )( 4 x 2 ! 4 x + 1 )!!!!!!!!!!!!!!!!!!!!!!!!!!!!! d )!! y = ( 3 x 3 ! 2 x 2 )( 3 x 3 + 2 x 2 )
  2. Find dy dx at the given value of x. Do NOT simplify before evaluating. a )!! y = ( 2 + 7 x )( x! 3 )!;! x = 2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! b )!! y = ( 1 + 2 x )( 1! 2 x )!;! x =

c )!! y = ( x^4! 4 )( x^4 + 4 )!;! x = 1

  1. Use the QUOTIENT RULE to find the first derivative. DO NOT simplify answer. a )!! y = x^2 2 x + 1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! b )!! y = 4 x^2 1! 6 x^3 c )!! y = x 2 ! 4 x x + 2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! d )!! y = x 2 ! 9 x 2 + 9 e )!! y = x^3 8! x^3 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! f )!! y = 4! x^2 3 x

Part C:

  1. Use the CHAIN RULE to find the first derivative. DO NOT simplify answers. a )!! y = 6 x 2 ( ) 5 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! b )!! y =! 3 x 4 ( ) 5
  • 6 x 2 ! 7 x c )!! y = p 2 (!^3 p^ +^1 ) 4 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! d )!! y = x 2 (!^1 ) 3

(^2 x^!^1 )

4 e )!! y = 6 x (^ x^2 +^1 ) 4 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!^ f^ )!!^ y^ =^2 x

( ) 1 2 g )!! y = (^) ( 3 t^4! 2 t ) 1 (^4) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! h )!! y = 5 x + 7 i )!! y =

4 + t^2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! j )!! y = 1 + u 1 3

6 k )!! y = (^) ( 1 + 3 u ) 6 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! l )!! y = 1 +

(^3) x

6

m )!! y =(! x )

3

  • 2! 2 x + 6! x !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! n )! y = (^) ( 2 x^3 + x ) 4 ! o )!! y = 6! x (^ x^3!^ !) 2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!^ p )!!^ y^ =^4 x 2

(^2 x^!^5 )

3

  1. Find the first derivative of each expression below. DO NOT simplify your answer.

a )!! y =! x + ( 5! x )

3 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! b )!! y = (^) ( 1! x + 2 x^2! 3 x^3 ) 4 c )!! y = (^) ( ( 2 x )^4 + ( 16! x )^3 ) 2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! d )!! y =

(^2 x^!^1 )

2

(^ x^!^2 )

3

e )!! y = ( 2 x! 1 )

! 3 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! f )!! y = ! x (^ x^3!^ !) 2

g )!! y = x ( 1! 2 x )

5 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! h )!! y = x^2! 1 x^2 + 1

2

  1. Differentiate each expression below. DO NOT simplify.

a )!! f ( x ) =! x! ( 2! x )

3 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! b )!! g ( x ) =! x + ! x

2 c )!! h ( x ) = (^) ( 2 x^2! 3 x + (^5) ) ! 1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! d )!! f ( x ) = x !!!

x!^3

4 e )!! k ( x ) =! x 2 +! 2 ( ) ! 3 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! f )!! p ( x ) =! 2 x 2 (!^3 x^ +^1 ) ! 4

  1. Given y = 3 x x + 2 find dy dx by: a) using the Quotient Rule b) using the Product Rule c) show the results in (a) and (b) are identical.

Part D

  1. If y = 2 x 3 + 5 x! 7 find: a) the rate of change of y with respect to x. b) the rate of change of y with respect to x at x = 1. c) the rate of change of y with respect to x at (2, 19).
  2. If y = 4 x^2! 6 x! 3 find: a) y ' b) dy dx c) an expression that calculates the slope of the tangent line at any point. d) the slope of the tangent line at x = 1 e) the slope of the tangent line at (2, - 1)

Part E

  1. Use IMPLICIT DIFFERENTIATION to find dy dx in terms of x and y. a )!! 4 x^2 + y^2 = 8 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! b )!!! 3 x! 4 y^2 = 2 c )!! x 2
  • 5 y 2
  • y = 10 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! d )!!! xy 2 = 4 e )!! x^2 + 2 xy! y^2 = 13 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! f )!!! y^3 + y = 4 x g )!! y ( x 2
  • 3 ) = y 4
  • 1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! h )!!! xy 3
  • x 3 y = 2

Part F:

  1. Each position function below describes motion in a straight line. Find the velocity and acceleration as functions of time ( t ). a )!! s ( t ) = 5 t^2! 2 t + 7 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! b )!! s ( t ) = 4 t^4!

t^2 + 3 c )!! s ( t ) = 6 t! 8 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! d )!! s ( t ) = t! 8 +

t

e )!! s ( t ) = t ( t! 3 )

2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! f )!! s ( t ) = t + 4 t t + 2 Part G:

  1. If x^2 + y^2 = 8 and dx dt = 3 , find dy dt at (-2, 2).
  2. If x 2 + y 2 = z 2 and dx dt

dy dt =! 1 , x = 1 and y = - 3, find dz dt

  1. If A is the area of a circle of radius r , find dA dt in terms of dr dt
  1. The area of a circular oil slick on the surface of the sea is increasing at the rate of 150 m^2 / s. How fast is the radius changing when: a) the radius 25 m. b) the area is 1000 m^2
  2. How fast is the side of a square shrinking when the length of the side is 2 m and the area is decreasing at 0.25 m^2 / s ?.
  3. The hypotenuse of a right triangle is of fixed length but the lengths of the other two sides x and y depends on time. How fast is y changing when dx dt = 4 and x = 8 if the length of the hypotenuse is 17?
  4. A spherical balloon is inflated so that the volume is increasing at the rate of 5 m^3 / min. a) at what rate is the diameter increasing when the radius is 6 m? b) at what rate is the diameter increasing when the volume is 36 m 3 ?
  1. Find dy dx in each case where A, B, m and n are constants:

a )!! y = cos ( Ax + B )!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! b )!! y = A cos n^ Bx

c )!! y = sin m^ ( xn^ )!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! d )!! y = Axn^ sin m^ Bx

  1. Find dy dx in each case: a )!! y = 2 tan x! tan 2 x !!!!!!!!!!!!!!!!!!! b )!! y = 3 sec 2 x 2 ( +^1 )!!!!!!!!!!!!!!!!!!! c )!!^ y^ =^3 sec^5 x d )!! y =!! x 2
  • sec 2 x !!!!!!!!!!!!!!!!!!!!! e )!! y = x^2 tan x !!!!!!!!!!!!!!!!!!!!!!!!!!! f )!! y = tan( x 2 )! tan 2 x g )!! y = x csc x !!!!!!!!!!!!!!!!!!!!!!!!!! h )!! y = x 2 tan

x

'!!!!!!!!!!!!!!!!!!!!!!!! i )!!^ y^ =^ sin^ (t an^ x )

  1. Use the derivatives of sin x and cos x to verify the derivatives of cot x and csc x as given on the Calculus 12 Formula Sheet.
  1. Find dy dx in each case. Watch for the need for Implicit Differentiation! a )!! y = cot 2 x + csc 2 x !!!!!!!!!!!!!!!!!!!!! b )!! y = 2 x^3 cot x !!!!!!!!!!!!!!!!!! c )!! y = (^) ( x + csc x^2 ) d )!! y =! 2 + csc^2 x !!!!!!!!!!!!!!!!!!!!!!! e )!! y = cot x 1 + csc 2 x !!!!!!!!!!!!!!!!! f )!! y = x !csc x

g )!! y = sin ( xy )!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! h )!! y = cot ( x + y )!!!!!!!!!!!!!!!!! i )!! y = (c ot x + sin x )

2 Part I:

  1. Find the derivative of each function: a )!! f ( x ) = ln( x! 2 )!!!!!!!!!!!!!!!!!!!!!! b )!! g ( x ) = 3 ln( 4! 3 x )!!!!!!!!!!!!!!!!!!!!! c )!! k ( x ) = ln( x^2 + 5 ) d )!! h ( x ) = ln x 2 + ln 5 !!!!!!!!!!!!!!!!!!! e )!! p ( x ) = ln x +

x

'!!!!!!!!!!!!!!!!!!!^ f^ )!! h ( x )^ =^ x 2 ln x

g )!! f ( x ) = ( ln x )

4

!!!!!!!!!!!!!!!!!!!!!!!!! h )!! f ( x ) = ln( x^4 )!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! i )!! g ( x ) = ( x ln x )

4

j )!! h ( x ) = ( ln x + x )

3

!!!!!!!!!!!!!!!!!!!! k )!! m ( x ) = (s in x ) (l n x )!!!!!!!!!!!!!!!!!!!!! l )!! p ( x ) = ln (s in x )

m )!! f ( x ) = ln x 3 + ln x

!!!!!!!!!!!!!!!!!!!!!! n )!! w ( x ) = ln (s in x + cos x )!!!!!!!!!!!!!!! o )!! r ( x ) = cos

2

(l n^ x )!!!!!!!!!

  1. Differentiate each functions: a )!! f ( x ) = 5 e 2 x !!!!!!!!!!!!!!!!!!!!!!!!!!! b )!! h ( x ) = 2 e x^2! x !!!!!!!!!!!!!!!!!!!!!!!!!! c )!! k ( x ) = 3 e 2 sin x d )!! p ( x ) = x 2 e x !!!!!!!!!!!!!!!!!!!!!!!!!!! e )!! q ( x ) = x 2 e ! 3 x !!!!!!!!!!!!!!!!!!!!!!!!!! f )!! m ( x ) = e 2 x ! e ! 2 x ( ) 2 g )!! g ( x ) = x! e x !!!!!!!!!!!!!!!!!!!!!! h )!! f ( x ) = ln! + e 2 x ( )!!!!!!!!!!!!!!!!!!!!! i )!! m ( x )^ =^ e^2 x 1 + e^2 x j )!! g ( x ) = ex^ ln x !!!!!!!!!!!!!!!!!!!!!!!!!!!! k )!! w ( x ) = ln (^) ( e x^ + e!^ x )!!!!!!!!!!!!!!!!!!!!!!!!!! l )!! r ( x ) = e x ln x
  2. If y defined implicitly as a function of x by the given equation, find dy dx

a )!! x + ylnx = 2 !!!!!!!!!!!!!!!!!!!!!!!!! b )!! y! e xy = 5 !!!!!!!!!!!!!!!!!!!!!!! c )!! e sin 2 y

  • 2 x = 4 y
  1. Find dy dx

a )!! y = x^!^ !!!!!!!!!!!!!!!!!!!!!!!!!!! b )!! y =! x^ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! c )!! y = e^!^ x d )!! y = 2 x^ !!!!!!!!!!!!!!!!!!!!!!!!!!! e )!! y = ex^! xe^ !!!!!!!!!!!!!!!!!!!!!!!!!! f )!! y = x^!^ 2 g )!! y = 10 x 2 !!!!!!!!!!!!!!!!!!!!!!!!! h )!! y = 2 sin^ x^ !!!!!!!!!!!!!!!!!!!!!!!!!!!!! i )!! y = 3 x (^2) + 3 x

  1. Find dy dx

a )!! y = ln x^2! 1 !!!!!!!!!!!!!!!!!!!!!!!! b )!! y = ln x^3! 7 x + 1 !!!!!!!!!!!!!!!!!!!!!! c )!!! y = (^) (l n x ) 3 d )!! y = ln tan x !!!!!!!!!!!!!!!!!!!!!!! e )!! y = cos x ln cos x !!!!!!!!!!!!!!!!!!!!!!!!! f )!! y = sin (^) (l n x ) Part J:

  1. Find dy dx

a )!! y = 5 ( 3 x! 1 )

3 !!!!!!!!!!!!!!!!!!!!! b )!! y = Ax^3! 2 Bx^2 + C^4 !!!!!!!!!!!!!!!!!! c )!! y = 5 x^3!

x

2 +^

x ! 5