Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Calculus 2 Final Exam Cheat Sheet, Cheat Sheet of Calculus

CALC 203 Humber College final exam formula sheet

Typology: Cheat Sheet

2020/2021

Uploaded on 04/23/2021

ekaram
ekaram 🇺🇸

4.6

(30)

264 documents

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Compiled by: Humber College Math Department
Last revision: 06/2015
x
x
x
22
ax
22
xa+
22
xa
a
a
a
CALC 203
FINAL EXAM FORMULA SHEET
Assume u & v are functions of x.
[ ] [ ] [ ]
2
sec sec tan csc csc cot
d d d d u u v uv
u u u u u u u u uv u v uv
dx dx dx dx v v
′′

′′
= =−⋅ =+ =


1
1
( 1) ln
1
n
n uu
u
u du C n du u C e du e C
nu
+
= + ≠− = + = +
+
∫∫
sin cos cos sin tan ln cos u du u C u du u C u du u C=−+ =+ = +
[ ]
=
=
b
a
b
a
avg dxxf
ab
rmsdxxf
ab
y2
)(
1
)(
1
= duvuvdvuPartsBy
θ
[ ] [ ] [ ]
22
sin cos cos sin tan sec [cot ] csc
dd d d
u uu u uu u uu u uu
dx dx dx dx
′′′
= =−⋅ = =
2 22
cot ln sin sec ln sec tan csc ln csc cot
sin2 sin 2
sin cos tan tan
24 24
u du u C u du u u C u du u u C
uu uu
u du C u du C u du u u C
= + = ++ = −+
= + = + + = −+
∫∫
∫∫
:Trignometric Substitutiion
θ
θ
22 22
22 22
22 22
Let tan , sec
Let sin , cos
Let sec , tan
xa xa xaa
ax xa axa
xa xa xa a
θθ
θθ
θθ
+ = +=
= −=
= −=
: ln ln ln ln ln ln ln ln
P
A
B
AB A B A B A P A=+= =Properties of Logarithm
Differentiation
Integration
222
cot cot sec tan csc cot u du u u C u du u C u du u C=−−+ = + =−+
∫∫∫
[ ] [ ]
1 ln log ln
ln
n n uu uu
b
d d ud u d d
cu cnu u u u e e u b b u b
dx dx u dx u b dx dx
′′
′′
 
= = = = = ⋅⋅
 
pf2

Partial preview of the text

Download Calculus 2 Final Exam Cheat Sheet and more Cheat Sheet Calculus in PDF only on Docsity!

Compiled by: Humber College Math Department

Last revision: 06/

x

x

x

2 2 a −x

2 2 x +a

2 2 x −a

a

a

a

CALC 203

FINAL EXAM FORMULA SHEET

 Assume u & v are functions of x.

[ sec^ ] sec^ tan^ [ csc^ ] csc^ cot [ ] 2

d d d d u u v uv u u u u u u u u uv u v uv dx dx dx dx v v

 ^ ′^ − ′

= ⋅ ′^ = − ⋅ ′^ = ′^ + ′ =

1 1 ( 1) ln 1

n n u u u u du C n du u C e du e C n u

= + ≠ − = + = +

sin u du = − cos u + C cos u du = sin u + C tan u du = − ln cosu +C

[ ]

b

a

b

a

avg f x dx b a

f xdx rms b a

y

2 ( )

ByParts udv= uv− vdu

θ

[ ] [ ] [ ]

2 2 sin cos cos sin tan sec [cot ] csc

d d d d u u u u u u u u u u u u dx dx dx dx

2 2 2

cot ln sin sec ln sec tan csc ln csc cot

sin 2 sin 2 sin cos tan tan 2 4 2 4

u du u C u du u u C u du u u C

u u u u u du C u du C u du u u C

Trignometric Substitutiion :

θ

θ

2 2 2 2

2 2 2 2

2 2 2 2

Let tan , sec

Let sin , cos

Let sec , tan

x a x a x a a

a x x a a x a

x a x a x a a

: ln ln ln ln ln ln ln ln A P B

Properties of Logarithm AB = A + B = A − B A =P A

Differentiation

Integration

2 2 2 cot u du = − cot u − u +C sec u du = tan u + C csc u du = − cotu +C

[ ] [ ]

1 ln log ln ln

n n u u u u b

d d u d u d d cu cnu u u u e e u b b u b dx dx u dx u b dx dx

− ′^ ′

  = ⋅ ′^ = =   = ⋅ ′^  = ⋅ ′⋅

Compiled by: Humber College Math Department

Last revision: 06/

sin

2 θ + cos

2 θ = 1 1 + tan

2 = sec

2 θ

cotθ =

1

𝑡𝑡𝑡𝑡

secθ =

1

𝑡𝑡𝑡𝑡

cscθ =

1

𝑠𝑠𝑡𝑡

Solutions to Second-order DE with right side zero , ay ′′^ + by ′+ cy= 0

The auxiliary equation has the form of

2 am + bm + c= 0 and:

Partial Sum Test:

If the limit exists, then the series converges. lim If the limit does not exist, then the series diverges.

n n

S S

→∞

Ratio Test:

Maclaurin Series:

Fourier Series:

Roots of the Auxiliary Equation Solution to ay ′′ + by ′+ cy= 0

Real and Unequal (two real roots m 1 andm 2 ) m^ x mx

y ce ce

1 2

Real and Equal (double root m) 1 2

mx mx

y = c e +c xe

Non Real (complex roots A ± Bi)

( 1 cos 2 sin )

Ax

y = e c Bx +c Bx

n

n

x n

f x

f x

f f x f f x !

() 2 3

b x b x b x b nx

a x a x a x a nx

a f x

n

n

sin sin 2 sin 3 sin

cos cos 2 cos 3 cos 2

1 2 3

1 2 3

0

− − −

π

π

π

π

π

a f xdx an f x nxdx bn f(x)sinnxdx

( )cos

where (^0)

: Sum of terms ( : , : ) 1

Sum to infinity 1 ( : , : ) 1

n

n

n

a r Geometric Sequence n S a first term r common ratio r

a S where r a first term r common ratio r

Trignometric Identities :

1

1 converges

lim 1 diverges

1 test fails

n

n n

u

u

→∞