Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Calculus 3 and calculus 4, Cheat Sheet of Calculus

Vector calculus and parametrizations

Typology: Cheat Sheet

2024/2025

Uploaded on 03/05/2025

autumn-madison
autumn-madison 🇺🇸

2 documents

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
pf2

Partial preview of the text

Download Calculus 3 and calculus 4 and more Cheat Sheet Calculus in PDF only on Docsity!

Parametrize the Intersection Example

eq .1 y

2

z

2

= x − 2 ∧ eq .2 y

2

  • z

2

  1. Solve for z:

y

2

  • z

2

= 9 =¿ z =√ 9 − y

2

  1. Sub z into eq 1.

y

2

9 − y

2

= x − 2

, then set y=t and solve for x

x = 2 t

2

, then find components to solve for intersection

x ( t )= 2 t

2

− 7 , y ( t )= t , z ( t )=

9 − t

2

Vector parametrization with sphere

r ⃗ ( t )=¿ 3 , 1 , − 4 >+ t ← 2 , − 2

( x − 1 )

2

+( y + 3 )

2

  • z

2

  1. x ( t )= 3 − 2 t , y ( t )= 1 − 2 t

( 3 − 2 t )− 1

2

( 1 − 2 t ) + 3

( 2 − 2 t )

2

+( 4 − 2 t )

2

+(− 4 + 3 t

Parallel Vectors ⃗

AB ∧
PQ

λ

V

x

W =

V x

λ

W

=¿ λ x

V
W

when A=(1,1) B=(3,4) P=(1,1) Q=(7,10)

  1. Find
AB ∧

PQ vectors

AB =

~ square root trick

27 s + 8 =( 4 + 9 t

2

3

2

( 27 s + 8 )

2

3

= 4 + 9 t

2

Volume of parallelopiped

Volume =| u ⃗ ∙ (

V x

W )|=¿

Points of intersection from graph

and equation in xy plane example

r ( t )=⟨ sin ( t ) , cos ( t ) , sin ( t ) cos ( 2 t )

  1. Components:

x ( t )=sin ( t ) , y ( t )=cos ( t ) , z ( t )=si

  1. Set z=0 and solve for two different values of t

0 =sin ( t )=¿ t = ∧ 0 =cos ( 2 t )=

Simplify arc length

r

'

( t )‖=

t

t

2

( 2 t + 1 )

2

t

2

2 t + 1

t

Simplifying during

arc length

r

'

( t )‖=

( 2 t + 1 )

2

t

2

**Arc length parametrization always 0 to t

Example:

r

t

=⟨ cos

4 t

, sin

4 t

, 3 t

  1. First derivative, then plug into integral

0

t

(− 4 sin ( 4 t ) )

2

+( 4 cos ( 4 t ) )

2

2

dt =¿

0

t

  1. Inverse:

s = 5 t =¿ t =

s

and plug inverse

x = rcosθ = h + rcos

s

r

y = rsinθ = k + rsin

s

r

,

z = z

** if given speed,

A)

4 x

2

  • 4 y

2

  • z

2

B)

Find components from

P=(3,2) and Q=(2,7)

PQ =⟨ 2 − 3 , 7 − 2 ⟩ =⟨− 1 , 5 ⟩ Determin

e Vectors Equivalent

AB

PQ?

A=(1,1) B=(3,7) P=(4,-1) Q=(6,5)

AB =⟨ 3 − 1 , 7 − 1 ⟩ =⟨ 2 , 6 ⟩

PQ =

**

Yes equivalent b/c same

Vector Parametrization Perpendicular to Plane Rules

  1. Perpendicular to xy plane = changes to z only
  2. Perpendicular to xz plane = changes to y only
  3. Perpendicular to yz plane = changes to x only

Show two vectors define same line:

Parametrize the Intersection Example

eq .1 y

2

z

2

= x − 2 ∧ eq .2 y

2

  • z

2

  1. Solve for z:

y

2

  • z

2

= 9 =¿ z =

9 − y

2

  1. Sub z into eq 1.

y

2

−( 9 − y

2

)= x − 2

, then set

y=t and solve for x

Two Different Parametrizations Through Same

Line

Example: (no intersection)

r

1

( t )=⟨ 1 , 1 , 0 ⟩ + t ⟨− 2 , 1 , 3 ⟩

r

2

( t )=⟨− 3 , 3 , 6 ⟩ + t ⟨ 4 , − 2 ,

  1. Set r 0 from r 1 equal to r 2

⟨ 1 , 1 , 0 ⟩ =⟨− 3 , 3 , 6 ⟩ + t ⟨ 4 , −

  1. Parametric equations of components

x ( t )=¿ 1 =− 3 + 4 t =¿ t =

Time for meteor to hit ground in xy from

parametric:

r ⃗ ( t )=¿ 2 , 1 , 4 >+ t < 3 , 2 , − 1 >¿