Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

AP Calculus BC Formula List and Theorems, Cheat Sheet of Calculus

Formulas and theorems for AP Calculus BC, including definitions of the derivative and continuity, Mean Value and Intermediate Value Theorems, first and second derivative tests, concavity tests, and inflection points. It also covers integration and L'Hospital's Rule.

What you will learn

  • What are critical numbers in calculus?
  • What is the Mean Value Theorem?
  • What is the definition of a derivative?

Typology: Cheat Sheet

2021/2022

Uploaded on 02/07/2022

dylanx
dylanx 🇺🇸

4.7

(21)

287 documents

1 / 5

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
2020 AP CALCULUS BC FORMULA LIST
______________________________________________________________________________
Definition of the derivative:
0
( ) lim
h
f x h f x
fx h

lim
xa
f x f a
fa xa
(Alternative form)
____________________________________________________________________________
Definition of continuity: f is continuous at c if and only if
1) f (c) is defined;
2)
lim ( ) exists;
xc
fx
3)
lim ( ) ( ).
xc
f x f c
____________________________________________________________________________________________________
Mean Value Theorem: If f is continuous on [a, b] and differentiable on (a, b), then there
exists a number c on (a, b) such that
( ) .
f b f a
fc ba
_____________________________________________________________________________________________________
Intermediate Value Theorem: If f is continuous on [a, b] and k is any number between f (a)
and f (b), then there is at least one number c between a and b such that f (c) = k.
_____________________________________________________________________________________________________
1
2
11
2
nn du
d d d
dx
x nx u
dx dx dx x x
u



 
 
2
f x g x f x f x g x
dd
f x g x f x g x g x f x
dx dx g x gx
df g x f g x g x
dx





 
 
22
[tan ] sec [cot ] csc
d du d du
u u u u
dx dx dx dx
[sec ] sec tan [csc ] csc cot
d du d du
u u u u u u
dx dx dx dx
11
[ln ] [log ] ln
a
d du d du
uu
dx u dx dx u a dx

[ ] [ ] ln
u u u u
d du d du
e e a a a
dx dx dx dx

22
11
[arcsin ] [arccos ]
11
d du d du
uu
dx dx dx dx
uu

22
11
[arctan ] [arccot ]
11
d du d du
uu
dx u dx dx u dx

____________________________________________________________________________________________
Definition of a definite integral:
011
lim lim
nn
xn
k k k k
kk
b
af x dx f x x f x x



pf3
pf4
pf5

Partial preview of the text

Download AP Calculus BC Formula List and Theorems and more Cheat Sheet Calculus in PDF only on Docsity!

2020 AP CALCULUS BC FORMULA LIST


Definition of the derivative :

0

( ) lim h

f x h f x f xh

lim x a

f x f a f ax a

(Alternative form)


Definition of continuity : f is continuous at c if and only if

  1. f ( c ) is defined;

  2. lim ( ) exists; x c

f x

  1. lim ( ) ( ). x c

f x f c


Mean Value Theorem : If f is continuous on [ a , b ] and differentiable on ( a , b ), then there

exists a number c on ( a , b ) such that f ( ) c^ f^ ^ b ^^ f^ ^ a . b a

   


Intermediate Value Theorem : If f is continuous on [ a , b ] and k is any number between f ( a )

and f ( b ), then there is at least one number c between a and b such that f ( c ) = k.


1 2

n n

du d d (^) dx d x nx u dx dx (^) u dx x x

  ^ ^ ^  ^ 

 ^ 

 ^ ^  ^ ^ ^ ^ 

2

d d^ f^ x^ g^ x^ f^ x^ f^ x^ g^ x f x g x f x g x g x f x dx dx g x (^) g x

d f g x f g x g x dx

 (^)    ^   

 ^  

[sin ] cos [cos ] sin

d du d du u u u u dx dx dx dx

2 2 [tan ] sec [cot ] csc

d du d du u u u u dx dx dx dx

[sec ] sec tan [csc ] csc cot

d du d du u u u u u u dx dx dx dx

[ln ] [log ] ln

a

d du d du u u dx u dx dx u a dx

[ ] [ ] ln

d (^) u u du d (^) u u du e e a a a dx dx dx dx

2 2

[arcsin ] [arccos ] 1 1

d du d du u u dx (^) u dx dx (^) u dx

2 2

[arctan ] [arc cot ] 1 1

d du d du u u dx u dx dx u dx


Definition of a definite integral:          

0 1 1

lim lim

n n

x k^ k^ n k^ k k k

b

a

f x dx f x x f x x     

 (^)     (^)    

 cos^ u du^ ^ sin^ u^ ^ C^ sin^ u du^  ^ cos u^  C 1 , 1 1

n n x x dx C n n

     

du ln u C u

 ^ 

ln

u u u u a e du e C a du C a

 

f^ ^ ^ g^ ^ x^ ^ ^ g^ ^ x dx ^^ ^ f^ ^ g^ ^ x^  C


Definition of a Critical Number:

Let f be defined at c. If f ^   c 0 or if f is undefined at c , then c is a critical number of f.


First Derivative Test:

Let c be a critical number of a function f that is continuous on an open interval I

containing c. If f is differentiable on the interval, except possibly at c , then f   c

can be classified:

  1. If f  x changes from negative to positive at c , then (^)  c , f (^)   c is a relative

minimum of f.

  1. If f  x changes from positive to negative at c , then (^)  c , f (^)   c is a relative

maximum of f.

Second Derivative Test:

Let f be a function such that the second derivative of f exists on an open interval containing c.

  1. If f  ^ c  0 and f ^   c  0 , then (^)  c , f (^)   c is a relative minimum.

  2. If f ^   c  0 and f ^   c  0 , then (^)  c , f (^)   c is a relative maximum


Definition of Concavity:

Let f be differentiable on an open interval I. The graph of f is concave upward on I if (^) f is increasing on the interval and

concave downward on I if f is decreasing on the interval.


Test for Concavity:

Let f be a function whose second derivative exists on an open interval I.

1) If f ^  x   0 for all x in I , then the graph of f is concave upward in I.

2) If f   x   0 for all x in I , then the graph of f is concave downward in I.


Definition of an Inflection Point:

A function f has an inflection point at  c , f (^)   c

1) if f    c 0 or f   c does not exist and

2) if f  changes sign from positive to negative or negative to positive at x  c

OR if f  x changes from increasing to decreasing or decreasing to increasing at x = c.

First Fundamental Theorem of Calculus:      

b

a

fx dxf bf a

final initial + change

initial final change

b

a b

a

f b f a f x dx

f a f b f x dx

   

    

Second Fundamental Theorem of Calculus:    

x

a

d f t dt f x dx

 

Chain Rule Version:  

      

g x

a

d f t dt f g x g x dx

Integration by Parts:

Indefinite:  udv  uv  vdu Definite:

b (^) b

a a

udv   uv^  vdu

Order for choosing “u”

L – Logarithms

I – Inverse Trig Functions

P – Polynomials

E – Exponential Functions

T – Trig Functions


Area Under a Curve

or

or

_____________________________________________________________________

Volume

Disk Method (no hole)

A. Horizontal Axis of Rotation:

B. Vertical Axis of Rotation:

Washer Method (with hole: whole-hole)

A. Horizontal Axis of Rotation:

B. Vertical Axis of Rotation:

Cross Sections

A. Cross sections are perpendicular to x-axis

B. Cross sections are perpendicular to y-axis

Length of a Curve

or

b

a

A   f xg x  dx

 ^ 

b

a

Aupperlower dx

d

c

A    f y  g y  dy  

d

c

A   right  left dy

b 2

a

V   upperlower dx

d 2

c

V   rightleft dy

2 2

b

a (^) whole hole

V  upper lower upper lower dx

 ^    

2 2

d

c (^) whole hole

Vright left right left dy

 ^    

b

a

VA x dx

d

c

V   A y dy

2

1

b

a

dy L dx dx

2

1

d

c

dx L dy dy

Definition of a Taylor polynomial:

If f has n derivatives at c , then the polynomial

 

2 3 ... 2! 3!!

n

n f c f c f c n P x f c f c x c x c x c x c n

is called the nth Taylor polynomial for f at c****.

Test Series Converges Diverges Comment

Nth Term Test for

Divergence

This test cannot be

used to show

convergence.

Geometric Series If converges:

P-Series

Alternate Series Converges if :

  1. terms are decreasing

Remainder:

Ratio No conclusion if:

1

n n

a

lim (^) n 0 n

a 

1

n

n

ar

r  1 r  1

1

1

a S r

1

p n n

p  1 p  1

1

1

n n n

a

 

^ 

an  0

lim (^) n 0 n

a 

Rnan (^)  1

1

n n

a

1 lim 1

n n n

a

a

 

1 lim 1

n n n

a

a

 

1 lim 1

n n n

a

a

 