



Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
A comprehensive equation sheet for aae 339, covering key concepts in aerospace propulsion. It includes equations for thrust, specific thrust, thrust specific fuel consumption, conservation of energy, isentropic relations for ideal gas, stagnation properties, gas mixtures, efficiency relationships, state definition, isentropic efficiencies, turbofan, propellers, normal shocks, isentropic flow relations, oblique shocks, fanno flow, rayleigh flow, combustion, rockets, and mass and density. This equation sheet serves as a valuable reference for students studying aerospace propulsion.
Typology: Study notes
1 / 5
This page cannot be seen from the preview
Don't miss anything!
Thrust 𝐹𝐹 = 𝑚𝑚̇ (^) 𝑒𝑒 𝑢𝑢𝑒𝑒 − 𝑚𝑚̇ (^) 𝑖𝑖 𝑢𝑢𝑖𝑖 + (𝑝𝑝𝑒𝑒 − 𝑝𝑝𝑎𝑎)𝐴𝐴𝑒𝑒 Specific thrust = (^) 𝑚𝑚̇𝐹𝐹𝑎𝑎
Thrust specific fuel consumption = 𝑚𝑚̇𝐹𝐹𝑓𝑓
Conservation of Energy 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 =^ 𝑄𝑄̇ − 𝑊𝑊̇^ +^ � 𝑚𝑚̇^ 𝑖𝑖𝑖𝑖
Isentropic Relations for Ideal Gas T 2 T 1 =^ �
p 2 p 1 �
𝛾𝛾− 𝛾𝛾 (^) = �𝜌𝜌 2 𝜌𝜌 1 �
𝛾𝛾−
Definitions
𝑀𝑀 =
Ideal Gas Relationships
𝑐𝑐𝑝𝑝 = (^) 𝛾𝛾−1𝛾𝛾𝛾𝛾
𝑝𝑝 = 𝜌𝜌𝑅𝑅𝜌𝜌 𝑎𝑎 = �𝛾𝛾𝑅𝑅𝜌𝜌
Stagnation Properties
𝛾𝛾− 2 𝑀𝑀^
2
𝑝𝑝 0 𝑝𝑝 =^ �^
𝑇𝑇 0 𝑇𝑇 �
𝛾𝛾 𝛾𝛾−1 (^) = �1 + 𝛾𝛾− 2 𝑀𝑀^
𝛾𝛾 𝛾𝛾−
ℎ = 𝑐𝑐𝑝𝑝𝜌𝜌
Gas Mixtures m = Σ m (^) i n = Σ ni
M y M m mf m i i = i = i
n y ni i =
=
k i n yi^ Mi M m 1
M
p y pi i i = =
=
k i
u mfi ui 1
k i i^ i
u yu 1
=
k i i^ i
h mfh 1
=
k i
h yi hi 1
k v (^) i i vi c yc 1 ,
=
k p (^) i i pi c yc 1 ,
Efficiency Relationships ηt =
1 2 (𝑚𝑚̇𝑒𝑒𝑜𝑜𝑒𝑒^2 −𝑚𝑚̇𝑎𝑎𝑜𝑜𝑎𝑎^2 ) 𝑚𝑚̇𝑓𝑓 𝑄𝑄 (^) 𝑅𝑅 𝜂𝜂𝑃𝑃 = 1 𝑇𝑇𝑜𝑜𝑎𝑎 2 (𝑚𝑚̇^ 𝑒𝑒𝑜𝑜𝑒𝑒^2 −𝑚𝑚̇𝑎𝑎𝑜𝑜𝑎𝑎^2 ) 𝜂𝜂 0 = 𝜂𝜂𝑜𝑜𝜂𝜂𝑝𝑝
State Definition
Isentropic Efficiencies 02 02
d^ s^ a a
h h h h
03 02 03 02
c h^ s h h h
04 05 04 05
t s
h h h h
η = − − 05 7 05 7
n s
h h h h
η = − −
Turbofan
β = ṁṁ^ b (^) a
𝑚𝑚̇𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑡𝑡 = 𝑚𝑚̇ (^) 𝑎𝑎 + 𝑚𝑚̇ (^) 𝑏𝑏
Pressure ratios
Propellers
𝑢𝑢𝑟𝑟𝑒𝑒𝑡𝑡 = �𝑢𝑢𝑎𝑎^2 + 𝑢𝑢𝑜𝑜^2 𝑢𝑢𝑜𝑜 = Ω𝑟𝑟 𝐽𝐽 = (^) 𝑖𝑖𝑜𝑜𝑛𝑛𝑎𝑎 𝑐𝑐𝐹𝐹 = (^) 𝜌𝜌𝑖𝑖𝑇𝑇 2 𝑝𝑝𝑛𝑛 4 𝑐𝑐𝑃𝑃 = 𝑤𝑤̇𝜌𝜌𝑖𝑖𝑠𝑠ℎ𝑎𝑎 (^3) 𝑛𝑛𝑓𝑓 5 𝑎𝑎 𝜂𝜂𝑝𝑝𝑟𝑟 = (^) 𝑤𝑤̇𝑇𝑇𝑠𝑠ℎ𝑎𝑎𝑝𝑝𝑜𝑜𝑎𝑎𝑓𝑓𝑎𝑎 = 𝑐𝑐𝑐𝑐 (^) 𝑃𝑃^ 𝐹𝐹 J n [=] rev/s 𝜌𝜌 = 𝐴𝐴𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑝𝑝 2 − 𝑝𝑝 1 ) 𝜌𝜌 = 𝐴𝐴𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑^12 𝜌𝜌(𝑢𝑢𝑒𝑒^2 − 𝑢𝑢𝑎𝑎^2 ) 𝑢𝑢𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 = (𝑜𝑜𝑒𝑒^ + 2 𝑜𝑜𝑎𝑎) 𝑜𝑜𝑑𝑑𝑑𝑑𝑠𝑠𝑑𝑑 𝑜𝑜𝑎𝑎^ =^
1 2 �^
𝑇𝑇𝑝𝑝 𝐴𝐴𝑑𝑑𝑑𝑑𝑠𝑠𝑑𝑑𝑜𝑜𝑎𝑎^2 𝜌𝜌 2 + 1�
(^1) � 2
1 2
1 (^2) + 1�
1 2 𝜌𝜌𝑢𝑢𝑎𝑎^ ��^
2𝑇𝑇 𝐴𝐴 (^) 𝑑𝑑𝑑𝑑𝑠𝑠𝑑𝑑 𝜌𝜌𝑜𝑜𝑎𝑎^2 + 1�
1 (^2) + 1� = 𝜂𝜂 𝑝𝑝𝑟𝑟𝜂𝜂𝑏𝑏𝑏𝑏𝑃𝑃𝑑𝑑ℎ𝑎𝑎𝑓𝑓𝑜𝑜
Turboprop T = 𝑚𝑚̇(𝑢𝑢𝑒𝑒 − 𝑢𝑢𝑎𝑎) + 𝜂𝜂^ 𝑝𝑝𝑝𝑝^ 𝜂𝜂 𝑜𝑜^ 𝑏𝑏𝑏𝑏𝑎𝑎^ 𝜂𝜂^ 𝑝𝑝𝑎𝑎𝛼𝛼 𝑚𝑚̇Δℎ
Rockets 𝜀𝜀 = 𝐴𝐴𝑒𝑒/𝐴𝐴𝑜𝑜 𝜆𝜆 = (^) 𝑚𝑚𝑝𝑝𝑚𝑚 +𝑚𝑚𝑝𝑝𝑑𝑑
𝑀𝑀𝑅𝑅 = 𝑚𝑚𝑚𝑚^0 𝑓𝑓 = 𝑚𝑚𝑝𝑝𝑝𝑝 𝑚𝑚^ +𝑚𝑚𝑝𝑝𝑝𝑝 +𝑚𝑚𝑝𝑝^ +𝑚𝑚𝑑𝑑 𝑑𝑑
𝑚𝑚 (^) 𝑝𝑝 = 𝑚𝑚 (^) 𝑝𝑝𝑡𝑡𝑀𝑀𝛾𝛾−^ 𝑀𝑀(𝑀𝑀𝛾𝛾𝛾𝛾−1−1)/𝜆𝜆
𝑚𝑚 (^) 𝑖𝑖 = 𝑚𝑚 (^) 𝑝𝑝^ (1−𝜆𝜆 𝜆𝜆) 𝐼𝐼𝑑𝑑𝑝𝑝 = 𝐹𝐹/𝑚𝑚̇𝑔𝑔 𝐼𝐼𝑑𝑑𝑝𝑝 = 𝐼𝐼/𝑚𝑚 (^) 𝑝𝑝 𝐼𝐼𝑑𝑑𝑝𝑝 = 𝑐𝑐𝑓𝑓 𝑐𝑐 ∗/𝑔𝑔
𝐼𝐼𝑑𝑑𝑝𝑝 = 𝐼𝐼𝑑𝑑𝑝𝑝,𝑣𝑣 − 𝑝𝑝𝑚𝑚̇𝑎𝑎^ 𝐴𝐴𝑏𝑏𝑒𝑒
𝑐𝑐 ∗^ = � 𝛾𝛾
�𝑇𝑇𝑑𝑑 𝑀𝑀𝑀𝑀(𝛾𝛾) �^
2 𝛾𝛾+1�
−(𝛾𝛾+1) 2 (𝛾𝛾−1)
𝑚𝑚̇ = 𝑝𝑝𝑑𝑑 𝑐𝑐𝐴𝐴 ∗𝑎𝑎 𝐹𝐹 = 𝑚𝑚̇𝑣𝑣𝑒𝑒 + (𝑝𝑝𝑒𝑒 − 𝑝𝑝𝑎𝑎)𝐴𝐴𝑒𝑒
𝑐𝑐𝑓𝑓 = (^) 𝑝𝑝𝑑𝑑𝐹𝐹𝐴𝐴𝑎𝑎 = � 2𝛾𝛾^
2 𝛾𝛾−1 �^
2 𝛾𝛾+1�
𝛾𝛾+ 𝛾𝛾−1 (^) � 1 −
𝛾𝛾− 𝛾𝛾 (^) ��
1 2
𝑐𝑐𝑓𝑓 = 𝑐𝑐𝑓𝑓,𝑣𝑣𝑎𝑎𝑐𝑐 − 𝑝𝑝𝑝𝑝𝑎𝑎𝑑𝑑 𝜀𝜀
Δ𝑣𝑣 = 𝑔𝑔𝑒𝑒 𝐼𝐼𝑑𝑑𝑝𝑝𝑙𝑙𝑙𝑙 �𝑚𝑚𝑚𝑚𝑜𝑜𝑓𝑓 � − ∫𝑜𝑜 𝑜𝑜 𝑏𝑏𝑔𝑔𝑑𝑑𝑑𝑑− ∫ 0 𝑜𝑜𝑏𝑏� 𝑚𝑚𝑛𝑛� 𝑑𝑑𝑑𝑑
MASS AND DENSITY 1 kg = 2.2046 lb (^) m 1 g/cm 3 = 1000 kg/m 3 1 g/cm 3 = 62.4281b (^) m/ft^3
LENGTH 1 cm = 0.3937 in 1 m = 3.2808 ft
VELOCITY 1 km/h = 0.62137 mile/h
VOLUME 1 cm 3 = 0.061024 in 3 1 m 3 = 35.315 ft^3 1 L = l0 –3^ m 3 1 L = 0.0353 ft^3
FORCE 1 N = 1 kg m/s^2 1 N = 0.22481 lb (^) f
PRESSURE 1 Pa = 1 N/m 2 = 1.4504 × 10–4^ lb (^) f /in 2 1 bar = 10 5 N/m 2 1 atm = 1.01325 bar
ENERGY AND SPECIFIC ENERGY 1 J = 1 N m = 0.73756 ft⋅lb (^) f 1 kJ = 737.56 ft lb (^) f 1 kJ = 0.9478 Btu 1 kJ/kg = 0.42992 Btu/lb (^) m
ENERGY TRANSFER RATE 1 W = 1 J/s = 3.413 Btu/h 1 kW = 1.34l hp
SPECIFIC HEAT 1 kJ/kg K = 0.238846 Btu/lbm⋅°R 1 kcal/kg K = 1 Btu/lb (^) m⋅°R
UNIVERSAL GAS CONSTANT 𝑅𝑅̄ = 8.314 kJ/kmol⋅K 𝑅𝑅̄ =1545 ft lb f /lbmol⋅°R 𝑅𝑅̄ =1.986 Btu/lbmol⋅°R
STD ACCELERATION OF GRAVITY g = 9.80665 m/s^2 g = 32.174 ft/s^2
g c = 32.1740 (^2) f
m lb s
lb ft ⋅
N s^2
kg m ⋅
1 lb (^) m = 0.4536 kg 1 lb (^) m = 0.031081 slug 1 lb (^) m/ft^3 = 0.016018 g/cm 3 1 lb (^) m/ft^3 = 16.018 kg/m 3 1 in = 2.54 cm 1 ft = 0.3048 m 1 mile/h = 1.6093 km/h 1 mile/h = 1.4667 ft/s 1 in 3 = 16.387 cm 3 1 ft^3 = 0.028317 m 3 1 gal = 0.13368 ft^3 1 gal = 3.7854 × l0 –3^ m 3
1 lb (^) f = 1 slug ft/s^2 1 lb (^) f = 32.174 lb (^) m ft/s^2 1 lb (^) f = 4.4482 N 1 lb (^) f /in 2 = 6894.8 Pa 1 lb (^) f /in 2 = 144 lb (^) f /ft^2 1 atm = 14.696 lb (^) f /in 2
1 ft⋅lb (^) f = 1.35582 J 1 Btu = 778.17 ft⋅lb (^) f 1 Btu = 1.0551 kJ 1 Btu/lb (^) m = 2.326 kJ/kg 1 kcal = 4.1868 kJ 1 Btu/h = 0.293 W 1 hp = 2545 Btu/h 1 hp = 550 ft lb (^) f /s 1 hp = 0.7457 kW 1 Btu/lb (^) m⋅°R = 4.1868 kJ/kg⋅K
STANDARD ATMOSPHERIC PRESSURE 1 atm = 1.01325 bar 1 atm = 14.696 lb (^) f /in 2
TEMPERATURE RELATIONS T(°R) = 1.8 T(K) T(°C) = T(K) – 273. T(°F) = T(°R) – 459.