Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Calculus formula sheet, Cheat Sheet of Calculus

Formulas from calculus are derivatives, integrals, logarithm rules and useful trig identities.

Typology: Cheat Sheet

2021/2022
On special offer
30 Points
Discount

Limited-time offer


Uploaded on 02/07/2022

nicoline
nicoline 🇺🇸

4.6

(12)

277 documents

1 / 1

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Spring 2019 Math 152
Formulas from Calculus I
courtesy: Amy Austin
Derivatives
1. d
dxxn=nxn1
2. d
dx ln x=1
x
3. d
dx ln(g(x)) = g(x)
g(x)
4. d
dxex=ex
5. d
dxax=axln a
6. d
dxeg(x)=g(x)eg(x)
7. d
dxag(x)=g(x)ag(x)ln a
8. d
dx cos1x=1
1x2
9. d
dx sin1x=1
1x2
10. d
dx tan1x=1
1 + x2
11. d
dx sin x= cos x
12. d
dx cos x=sin x
13. d
dx tan x= sec2x
14. d
dx sec x= sec xtan x
15. d
dx csc x=csc xcot x
16. d
dx cot x=csc2x
17. Product Rule: d
dxgh =gh+gh
18. Quotient Rule: d
dx
g
h=ghgh
h2
19. Chain Rule: d
dxf(g(x)) = f(g(x))g(x)
Integrals
20. Zxndx =xn+1
n+ 1 +C, if n6=1
21. Zexdx =ex+C
22. Zaxdx =ax
ln a+C
23. Z1
xdx = ln |x|+C
24. Z1
1 + x2dx = arctan x+C
25. Z1
a2+x2dx =1
aarctan x
a+C
26. Z1
1x2dx = arcsin x+C
27. Zcos x dx = sin x+C
28. Zsin x dx =cos x+C
29. Zsec xtan x dx = sec x+C
30. Zsec2x dx = tan x+C
31. Zcsc xcot x dx =csc x+C
32. Zcsc2x dx =cot x+C
Logarithm Rules
33. ln P Q = ln P+ ln Q
34. ln P
Q= ln Pln Q
35. ln Pr=rln P
Useful Trig Identities
36. cos2x+ sin2x= 1
37. tan2x+ 1 = sec2x
38. cos2x=1
2[1 + cos 2x]
39. sin2x=1
2[1 cos 2x]
40. sin 2x= 2 sin xcos x
41. cos 2x= 1 2 sin2x= 2 cos2x1
Discount

On special offer

Partial preview of the text

Download Calculus formula sheet and more Cheat Sheet Calculus in PDF only on Docsity!

Spring 2019 Math 152

Formulas from Calculus I

courtesy: Amy Austin

Derivatives

d dx

xn^ = nxn−^1

d dx

ln x =

x

d dx

ln(g(x)) =

g′(x) g(x)

d dx

ex^ = ex

d dx

a x = a x ln a

d dx

eg(x)^ = g′(x)eg(x)

d dx

ag(x)^ = g′(x)ag(x)^ ln a

d dx

cos − 1 x =

1 − x^2

d dx

sin − 1 x =

1 − x^2

d dx

tan − 1 x =

1 + x^2

d dx

sin x = cos x

d dx

cos x = − sin x

d dx

tan x = sec 2 x

d dx

sec x = sec x tan x

d dx

csc x = − csc x cot x

d dx

cot x = − csc^2 x

  1. Product Rule:

d dx

gh = g′h + gh′

  1. Quotient Rule:

d dx

g h

g′h − gh′ h^2

  1. Chain Rule:

d dx

f (g(x)) = f ′(g(x))g′(x)

Integrals

∫ xn^ dx =

xn+ n + 1

  • C, if n 6 = − 1

∫ ex^ dx = ex^ + C

∫ a x dx =

ax ln a

+ C

∫ 1 x

dx = ln |x| + C

∫ 1 1 + x^2

dx = arctan x + C

∫ 1 a^2 + x^2

dx =

a

arctan

( x a

)

  • C

∫ 1 √ 1 − x^2

dx = arcsin x + C

∫ cos x dx = sin x + C

∫ sin x dx = − cos x + C

∫ sec x tan x dx = sec x + C

∫ sec 2 x dx = tan x + C

∫ csc x cot x dx = − csc x + C

∫ csc^2 x dx = − cot x + C

Logarithm Rules

  1. ln P Q = ln P + ln Q
  2. ln

P

Q

= ln P − ln Q

  1. ln P r^ = r ln P Useful Trig Identities
  2. cos^2 x + sin^2 x = 1
  3. tan^2 x + 1 = sec^2 x
  4. cos^2 x =

[1 + cos 2x]

  1. sin^2 x =

[1 − cos 2x]

  1. sin 2x = 2 sin x cos x
  2. cos 2x = 1 − 2 sin^2 x = 2 cos^2 x − 1