













Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
All the topics that the Central Divided Difference Method will cover. Unlock it and see it yourself; I will ensure it will help you.
Typology: Lecture notes
1 / 21
This page cannot be seen from the preview
Don't miss anything!
Introduction
ฮ๐ฆ
ฮ๐ฅ
=
๐(๐ฅ๐ + ฮ๐ฅ) โ ๐(๐ฅ๐)
ฮ๐ฅ ๐๐ฆ
๐๐ฅ
=ฮ๐ฅ lim 0
๐(๐ฅ๐ + ฮ๐ฅ) โ ๐(๐ฅ๐)
ฮ๐ฅ
๐ผ = เถฑ
๐
๐
๐(๐ฅ)๐๐ฅ
Applications
โข Differentiation has so many engineering applications
(heat transfer, fluid dynamics, chemical reaction kinetics,
etcโฆ)
โข Integration is equally used in engineering (compute work
in ME, nonuniform force in SE, cross-sectional area of a
river, etcโฆ)
Differentiation
๐๐
๐๐
=
๐(๐๐ + ๐๐) โ ๐(๐๐)
๐๐ x
f x x f x
dx
dy (^) i i
x (^) ๏
๏
๏
( ) ( ) lim 0
Numerical Application of Taylor Series
If f (x) and its first n+ 1 derivatives are continuous on an
interval containing x
and x
, then:
Where the remainder R
is defined as:
๐ ๐ฅ๐+ 1 โ ๐ ๐ฅ๐ + ๐
โฒ ๐ฅ๐ ๐ฅ๐+ 1 โ ๐ฅ๐ +
๐
โฒโฒ ๐ฅ๐
2!
๐ฅ๐+ 1 โ ๐ฅ๐
2
๐
3 ๐ฅ๐
3!
๐ฅ๐+ 1 โ ๐ฅ๐
3 +... +
๐
๐ ๐ฅ๐
๐!
๐ฅ๐+ 1 โ ๐ฅ๐
๐
๐ ๐ =
๐
๐+ 1 ๐
๐ + 1!
๐ฅ๐+ 1 โ ๐ฅ๐
๐+ 1
Numerical Application of Taylor Series
โข The series is built term by term
โข Continuing the addition of more terms to get better
approximation we have:
๐ ๐ฅ๐+ 1 โ ๐ ๐ฅ๐
๐ ๐ฅ๐+ 1 โ ๐ ๐ฅ๐ + ๐
โฒ ๐ฅ๐ ๐ฅ๐+ 1 โ ๐ฅ๐
๐ ๐ฅ๐+ 1 โ ๐ ๐ฅ๐ + ๐
โฒ ๐ฅ๐ ๐ฅ๐+ 1 โ ๐ฅ๐ +
๐
โฒโฒ ๐ฅ๐
2!
๐ฅ๐+ 1 โ ๐ฅ๐
2
st
nd
Taylor Series: ฮพ in the Remainder Term
n
n
n+ 1
n+ 1.
i+ 1
2
Centered Difference Formulas- 1
st derivative
Start with the 2
nd degree Taylor expansions about x for f (x+h) and f (x-h):
Subtract ( 5 ) from ( 4 )
Hence
๐(๐ฅ๐+ 1 ) = ๐(๐ฅ๐) + ๐โฒ(๐ฅ๐)โ +
๐โฒโฒ(๐ฅ๐)
2
โ
2
3 )
2
3
( 4 )
( 5 )
๐(๐ฅ๐+ 1 ) โ ๐(๐ฅ๐โ 1 ) = 2 ๐โฒ(๐ฅ๐)โ + ๐(โ
3 )
2
Centered Difference Formulas- 2
nd derivative
Start with the 3
rd degree Taylor expansions about x for f (x+h) and f (x-h):
Add equations ( 8 ) and ( 9 ), and solve for f โโ(x)
2
3
4 ) ( 8 )
2 โ
3
4 ) (^9 )
Centered Difference Formulas- 2
nd derivative
Start with the addition between the 5
th degree Taylor expansions about x for f (x+h)
and f (x-h):
Use the step size 2 h, instead of h, in ( 10 )
Multiply equation ( 10 ) by 16 , subtract ( 11 ) from it, and solve for f โโ(x)
2
( 4 )
4
6 ) (^10 )
( 11 )
2
4
2
( 4 )
4
6
Example 1
Solution
( )
( ) ( )
i i i
1
14
16 2
1
=
= โ
t (^) i โ = ti โ๏ t
( )
( ) ( )
2 ( ) 2
18 14 16
a ๏ป
( ) ( )
๏ t = 2
( ) ( )
18 2000 ln 4
4
โ ๏บ ๏ป
4
4
( )
( ) ( )
a ๏ป
2 ๏ป 29. 694 m/s
Example 1
The absolute relative true error is
๏ t =
= 0. 069157 %
The exact value of the acceleration at is
( )
2 a 16 = 29. 674 m/s
t = 16 s
Example 2
The velocity of a rocket is given by
( ) 9. 8 , 0 30 14 10 2100
2000 ln 4
4
โ ๏ฃ ๏ฃ ๏บ ๏ป
= t t t
Use central difference approximation of second derivative of to
calculate the jerk at. Use a step size of.
ฮฝ ( ) t
Example 2
Solution ( )
( )
2
(^1 )
t
t t t a t
i i i i ๏
ti
1
1
( )
( ) ( ) ( )
( )
2
๏ t = 2
( ) ( )
18 2000 ln 4
4
โ ๏บ ๏ป
( ) ( )
16 2000 ln 4
4
โ ๏บ ๏ป
( ) ( )
14 10 14 2000 ln 4
4
โ ๏บ ๏ป
๏น ๏ช ๏ซ
๏ฉ
๏ด โ
๏ด ๏ฎ = =^334.^24 m/s
( )
( ) ( ) ( )
( )
2 2
j ๏ป
( )
3 ๏ป 0. 77969 m/s