





Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Formula sheet with parameter values, diffusions, electrostatics, uniform doping, full ionization, flow problems and CMOS scaling rules.
Typology: Cheat Sheet
1 / 9
This page cannot be seen from the preview
Don't miss anything!
Formula Sheet for the Final Exam, Fall 2009
Parameter Values: Periodic Table:
q = 1.6 x 10
" 19 Coul
o
= 8.854 x 10
" 14 F / cm
r,Si
Si
" 12 F / cm
n i [ Si @ R. T ] $^10
10 cm
" 3
kT / q $ 0.025 V ; (^) ( kT / q ) ln10 $ 0.06 V
1 μ m = 1 x 10
" 4 cm
Al Si P
Ga Ge As
In Sn Sb
Drift/Diffusion: Electrostatics:
Drift velocity : s x
= ±μ m
x
Conductivity : " = q μ e
n + μ h ( p )
Diffusion flux : F m
m
m
$ x
Einstein relation :
m
μ m
kT
q
dE ( x )
dx
= #( x ) E ( x ) =
#( x ) dx $
d &( x )
dx
= E ( x ) &( x ) = % E ( x ) dx $
d
2 &( x )
dx
2
= #( x ) &( x ) = %
#( x ) dxdx $$
The Five Basic Equations:
Electron continuity :
" n ( x , t )
" t
q
e
( x , t )
" x
= g L
( x , t ) # n ( x , t ) $ p ( x , t ) # n i
2
[ ] r ( T )
Hole continuity :
" p ( x , t )
" t
q
h
( x , t )
" x
= g L
( x , t ) # n ( x , t ) $ p ( x , t ) # n i
2
[ ] r ( T )
Electron current density : J e
( x , t ) = q μ e
n ( x , t ) E ( x , t ) + qD e
" n ( x , t )
" x
Hole current density : J h
( x , t ) = q μ h
p ( x , t ) E ( x , t ) # qD h
" p ( x , t )
" x
Poisson's equation :
" E ( x , t )
" x
q
%
p ( x , t ) # n ( x , t ) + N d
( x ) # N a
( x ) [ ]
Uniform doping, full ionization, TE
n - type, N d
a
n o
d
a
D
, p o
= n i
2 n o
n
kT
q
ln
D
n i
p - type, N a
d
p o
a
d
A
, n o
= n i
2 p o
p
kT
q
ln
A
n i
Uniform optical excitation, uniform doping
n = n o
n ' p = p o
p ' n ' = p '
dn '
dt
= g l
( t ) " p o
Low level injection, n',p' << p o
dn '
dt
n '
min
= g l
( t ) with # min
$ p o ( r )
" 1
Flow problems (uniformly doped quasi-neutral regions with quasi-static excitation and low
level injection; p-type example):
Minority carrier excess :
d
2 n '( x )
dx
2
n '( x )
e
2
e
g L
( x ) L e
e
$ e
Minority carrier current density : J e
( x ) % qD e
dn '( t )
dx
Majority carrier current density : J h
( x ) = J Tot
e
( x )
Electric field : E x
( x ) %
q μ h
p o
h
( x ) +
h
e
e
( x )
Majority carrier excess : p '( x ) % n '( x ) +
,
q
dE x
( x )
dx
Short base, infinite lifetime limit:
Minority carrier excess :
d
2 n '( x )
dx
2
e
g L
( x ), n '( x ) " #
e
g L
( x ) dxdx $$
Non-uniformly doped semiconductor sample in thermal equilibrium
d
2 "( x )
dx
2
q
n i
e
q " ( x ) kT $ e
$ q " ( x ) kT
[ ]
d
( x ) $ N a [ ( x )] { }
n o
( x ) = n i
e
q " ( x ) kT , p o
( x ) = n i
e
$ q " ( x ) kT , p o
( x ) n o
( x ) = n i
2
Depletion approximation for abrupt p-n junction:
"( x ) =
Ap_
qN Dn
for
for
for
for
x < # x p
p_
< x < 0
0 < x < x n
x n
< x
Ap
x p
Dn
x n
( b
n
p
kT
q
ln
Dn
Ap
n i
2
w ( v AB
Si
( b
AB_ ( )
q
Ap
( (^) Dn )
Ap
Dn
pk
2 q ( b
AB_ ( )
Si
Ap
Dn
Ap
( (^) Dn )
q DP
( v AB
) = # AqN Ap
x p
v AB ( ) =^ # A^^2 q * Si
( b
AB_ ( )
Ap
Dn
Ap
( (^) Dn )
Ideal p-n junction diode i-v relation:
n (- x p
n i
2
Ap
e
qvAB / kT , n '(- x p
n i
2
Ap
e
qvAB / kT " 1 ( ) ; p ( x n
n i
2
Dn
e
qvAB / kT , p '( x n
n i
2
Dn
e
qvAB / kT " 1 ( )
i D
= Aq n i
2
h
Dn
w n , eff
e
Ap
w p , eff
( e
qv AB / kT
w m
" x m
if L m
w m
m
tanh w m
" x m ( ) L m [ ] if^ L m
~ w m
m
if L m
<< w m
q Q NR, p - side
= Aq n '( x ) dx ,
q QNR , n - side
= Aq p '( x ) dx , Note : p '( x ). n '( x ) in QNRs
x n
w n
Large Signal Model for MOSFETs Operated below Threshold (weak inversion):
(n-channel) Only valid for for v GS
T
, v DS
≥ 0, v BS
i G
( v GS
, v DS
, v BS
) = 0 , i B
( v GS
, v DS
, v BS
i D , s # t
( v GS
, v DS
, v BS
S , s # t
e
q v GS
T_ ( v BS { )} n^ kT^ 1 # e
DS_ / kT
where I S , s # t
μ e
kT
q
2
Si
qN A
p
BS_
o
t
2
p
BS_
with V t
kT
q
o
μ e
ox
, - $
Si
qN A
ox
, n " 1 +
p
BS_
Large Signal Model for MOSFETs Reaching Velocity Saturation at Small v DS
(n-channel) Only valid for v BS
≤ 0, v DS
≥ 0. Neglects v DS
/2 relative to (v GS
T
Saturation model : s y
y
) = μ e
y
if E y
crit
, s y
y
) = μ e
crit
sat_
if E y
crit
i G
( v GS
, v DS
, v BS
) = 0 , i B
( v GS
, v DS
, v BS
i D
( v GS
, v DS
, v BS
0 for v GS
T
DS
W s sat
ox
v GS
T
( v BS
DS
crit
for 0 < v GS
T
crit
L < v DS
μ e
ox
v GS
T
( v BS
DS
for 0 < v GS
T
DS
crit
with ' # 1 V A
CMOS Performance
Transfer characteristic:
In general : V LO
HI
DD
ON
OFF
Symmetry : V M
DD
and NM LO
HI
n
p
and V Tp
Tn
Minimum size gate : L n
p
min
n
min
p
= μ n
μ
n
or W p
= s sat , n
s
Switching times and gate delay (no velocity saturation):
" Ch arg e
Disch arg e
L
DD
n
DD
Tn
2
L
= n W n
n
p
ox
= 3 nW min
min
ox
assumes μ e
= 2 μ h
" Min. Cycle
Ch arg e
Disch arg e
12 nL min
2 V DD
μ e
DD
Tn
2
Dynamic power dissipation (no velocity saturation):
dyn @ f max
L
DD
2 f max
L
DD
2
Min. Cycle
μ e
min
ox
DD
DD
Tn
2
t ox
min
dyn @ f max
dyn @ f max
InverterArea
dyn @ f max
min
min
μ e
ox
DD
DD
Tn
2
t ox
min
2
Switching times and gate delay (full velocity saturation):
Ch arg e
Disch arg e
L
DD
min
s sat
ox
V DD
Tn [ ]
L
= n W n
n
p
( (^) p )
ox
= 2 nW min
min
ox
assumes s sat , e
= s sat , h
Min. Cycle
Ch arg e
Disch arg e
4 nL min
DD
s sat
DD
Tn [ ]
Dynamic power dissipation per gate (full velocity saturation):
dyn @ f max
L
DD
2 f max
L
DD
2
Min. Cycle
s sat
min
$ ox
DD
DD
Tn [ ]
t ox
dyn @ f max
dyn @ f max
InverterArea
dyn @ f max
min
min
s sat
$ ox
DD
DD
Tn [ ]
t ox
2
Static power dissipation per gate
static
DD
D , off
DD
min
min
μ e
t
2
Si
qN A
BS
e
$ V { (^) T } nV t
static
static
Inverter Area
DD
min
2
μ e
t
2
Si
qN A
BS
e
$ V { (^) T } nV t
CMOS Scaling Rules - Constant electric field scaling
Scaled Dimensions : L min
min
s W " W s t ox
" t ox
s N A
" s N A
Scaled Voltages : V DD
DD
s V BS
BS
s
Consequences : C ox
" sC ox
K " sK V T
T
s
dyn_
dyn
s
2 PD dyn @ f max
dyn @ f max
static
" s
2 e
( s $ 1 ) V T s n V t PD static
Device transit times
Short Base Diode transit time : " b
w B
2
min, B
w B
2
2 μ min, B
thermal
Channel transit time, MOSFET w.o. velocity saturation : " Ch
2
μ Ch
GS
T
Channel transit time, MOSFET with velocity saturation : " Ch
s sat
Single transistor analog circuit building block stages Note: g l ≡ g sl
v
i
i
o
m
o
l [ ]
m
l
'
( )
o
o
m
mb [ ] r l
'
m
mb [ ]
o
m
mb
o [ ]
t
m [ ]
m
o
l [ ]
m
o
l [ ]
m
l
F
o
m
F [ ]
o
F [ ]
m
F
l
F
F
v [ ]
o
F
o
F [ ]
Voltage
gain, A v
Current
gain, A i
Input
resistance, R i
Output
resistance, R o
Common emitter "
g m
g o
m_
r l
'
( )
$ g l
g o
r %
r o
g o
Common base
g m
g o
m_
r l
'
( )
r %
[^ $ +^1 ]
#[ $ + (^1) ] r o
Emitter follower
g m
g m
g %
g o
g l [ ]
$ g l
g o
%
+[ $ + (^1) ] r l
' r t
[^ $ +^1 ]
Emitter degeneracy # "
r l
F
%
+[ $ + (^1) ] R F
o_
Shunt feedback "
g m
F [ ]
g o
F [ ]
m_
F
g l
F
g %
F
v [ ]
r o
F
g o
F
OCTC/SCTC Methods for Estimating Amplifier Bandwidth
OCTC estimate of " HI
HI
i [ ]
$ 1
i
%
i
i
i
%
with R i
defined as the equivalent resistance in parallel with C i
with all other parasitic
device capacitors (C π 's, C μ 's, C gs 's, C gd 's, etc.) open circuited.
SCTC estimate of " LO
LO
j
j
$
j
[ (^) j]
% 1
j
$
with R j defined as the equivalent resistance in parallel with C j with all other baising
and coupling capacitors (C Ι
's, C O
's, C E
's, C S
's, etc.) short circuited.
Difference- and Common-mode signals
Given two signals, v 1 and v 2 , we can decompose them into two new signals, one (v C
that is common to both v 1 and v 2 , and the other (v D ) that makes an equal, but opposite
polarity contribution to v 1 and v 2
v D
" v 1
2
and v C
v 1
$$ % v 1
= v C
v D
and v 1
= v C
v D
Short circuit current gain unity gain frequency, f T
" t
g m
gs
= 3 μ Ch
GS
T
2 = 3 s Ch
2 L MOSFET, no vel. sat.
g m
gs
= W s sat
ox
W LC ox
= s sat
L MOSFET, w. vel. sat.
g m
%
; lim I c &'
g m
%
min, B
w B
2 BJT, large I C
/ tr
Revised 12/9/