Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Circuit and microelectronic devices formula sheet, Cheat Sheet of Microelectronic Circuits

Formula sheet with parameter values, diffusions, electrostatics, uniform doping, full ionization, flow problems and CMOS scaling rules.

Typology: Cheat Sheet

2021/2022

Uploaded on 02/07/2022

anala
anala 🇺🇸

4.3

(15)

259 documents

1 / 9

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
1
6.012 Microelectronic Devices and Circuits
Formula Sheet for the Final Exam, Fall 2009
Parameter Values: Periodic Table:
!
q=1.6x10"19 Coul
#
o= 8.854 x10"14 F/cm
#
r,Si = 11.7,
#
Si $10"12 F/cm
niSi@R.T
[ ]
$1010 cm"3
kT /q$0.025 V;kT /q
( )
ln10 $0.06 V
1µm=1x10"4cm
!
III IV V
B C N
Al Si P
Ga Ge As
In Sn Sb
Drift/Diffusion: Electrostatics:
!
Drift velocity : s
x= ±µmEx
Conductivity :
"
=qµen+ µhp
( )
Diffusion flux : Fm=#Dm
$
Cm
$
x
Einstein relation : Dm
µm
=kT
q
!
"
dE (x)
dx =
#
(x)E(x)=1
"#
(x)dx
$
%d
&
(x)
dx =E(x)
&
(x)=%E(x)dx
$
%
"
d2
&
(x)
dx 2=
#
(x)
&
(x)=%1
"#
(x)dxdx
$$
The Five Basic Equations:
!
Electron continuity :
"
n(x,t)
"
t#1
q
"
Je(x,t)
"
x=gL(x,t)#n(x,t)$p(x,t)#ni
2
[ ]
r(T)
Hole continuity :
"
p(x,t)
"
t+1
q
"
Jh(x,t)
"
x=gL(x,t)#n(x,t)$p(x,t)#ni
2
[ ]
r(T)
Electron current density : Je(x,t)=qµen(x,t)E(x,t)+qDe
"
n(x,t)
"
x
Hole current density : Jh(x,t)=qµhp(x,t)E(x,t)#qDh
"
p(x,t)
"
x
Poisson's equation :
"
E(x,t)
"
x=q
%
p(x,t)#n(x,t)+Nd
+(x)#Na
#(x)
[ ]
Uniform doping, full ionization, TE
!
n - type, N d>> N a
no"Nd#Na$ND, po=ni
2no,
%
n=kT
qln ND
ni
p - type, N a>> N d
po"Na#Nd$NA, no=ni
2po,
%
p=#kT
qln NA
ni
Uniform optical excitation, uniform doping
pf3
pf4
pf5
pf8
pf9

Partial preview of the text

Download Circuit and microelectronic devices formula sheet and more Cheat Sheet Microelectronic Circuits in PDF only on Docsity!

6.012 Microelectronic Devices and Circuits

Formula Sheet for the Final Exam, Fall 2009

Parameter Values: Periodic Table:

q = 1.6 x 10

" 19 Coul

o

= 8.854 x 10

" 14 F / cm

r,Si

Si

" 12 F / cm

n i [ Si @ R. T ] $^10

10 cm

" 3

kT / q $ 0.025 V ; (^) ( kT / q ) ln10 $ 0.06 V

1 μ m = 1 x 10

" 4 cm

III IV V

B C N

Al Si P

Ga Ge As

In Sn Sb

Drift/Diffusion: Electrostatics:

Drift velocity : s x

= ±μ m

E

x

Conductivity : " = q μ e

n + μ h ( p )

Diffusion flux : F m

= # D

m

$ C

m

$ x

Einstein relation :

D

m

μ m

kT

q

dE ( x )

dx

= #( x ) E ( x ) =

#( x ) dx $

d &( x )

dx

= E ( x ) &( x ) = % E ( x ) dx $

d

2 &( x )

dx

2

= #( x ) &( x ) = %

#( x ) dxdx $$

The Five Basic Equations:

Electron continuity :

" n ( x , t )

" t

q

" J

e

( x , t )

" x

= g L

( x , t ) # n ( x , t ) $ p ( x , t ) # n i

2

[ ] r ( T )

Hole continuity :

" p ( x , t )

" t

q

" J

h

( x , t )

" x

= g L

( x , t ) # n ( x , t ) $ p ( x , t ) # n i

2

[ ] r ( T )

Electron current density : J e

( x , t ) = q μ e

n ( x , t ) E ( x , t ) + qD e

" n ( x , t )

" x

Hole current density : J h

( x , t ) = q μ h

p ( x , t ) E ( x , t ) # qD h

" p ( x , t )

" x

Poisson's equation :

" E ( x , t )

" x

q

%

p ( x , t ) # n ( x , t ) + N d

( x ) # N a

( x ) [ ]

Uniform doping, full ionization, TE

n - type, N d

>> N

a

n o

" N

d

# N

a

$ N

D

, p o

= n i

2 n o

n

kT

q

ln

N

D

n i

p - type, N a

>> N

d

p o

" N

a

# N

d

$ N

A

, n o

= n i

2 p o

p

kT

q

ln

N

A

n i

Uniform optical excitation, uniform doping

n = n o

  • n ' p = p o

  • p ' n ' = p '

dn '

dt

= g l

( t ) " p o

  • n o ( +^ n ') n '^ r

Low level injection, n',p' << p o

  • n o

dn '

dt

n '

min

= g l

( t ) with # min

$ p o ( r )

" 1

Flow problems (uniformly doped quasi-neutral regions with quasi-static excitation and low

level injection; p-type example):

Minority carrier excess :

d

2 n '( x )

dx

2

n '( x )

L

e

2

D

e

g L

( x ) L e

# D

e

$ e

Minority carrier current density : J e

( x ) % qD e

dn '( t )

dx

Majority carrier current density : J h

( x ) = J Tot

" J

e

( x )

Electric field : E x

( x ) %

q μ h

p o

J

h

( x ) +

D

h

D

e

J

e

( x )

Majority carrier excess : p '( x ) % n '( x ) +

,

q

dE x

( x )

dx

Short base, infinite lifetime limit:

Minority carrier excess :

d

2 n '( x )

dx

2

D

e

g L

( x ), n '( x ) " #

D

e

g L

( x ) dxdx $$

Non-uniformly doped semiconductor sample in thermal equilibrium

d

2 "( x )

dx

2

q

n i

e

q " ( x ) kT $ e

$ q " ( x ) kT

[ ]

$ N

d

( x ) $ N a [ ( x )] { }

n o

( x ) = n i

e

q " ( x ) kT , p o

( x ) = n i

e

$ q " ( x ) kT , p o

( x ) n o

( x ) = n i

2

Depletion approximation for abrupt p-n junction:

"( x ) =

_qN

Ap_

qN Dn

for

for

for

for

x < # x p

_x

p_

< x < 0

0 < x < x n

x n

< x

N

Ap

x p

= N

Dn

x n

( b

n

p

kT

q

ln

N

Dn

N

Ap

n i

2

w ( v AB

Si

( b

_v

AB_ ( )

q

N

Ap

+ N

( (^) Dn )

N

Ap

N

Dn

E

pk

2 q ( b

_v

AB_ ( )

Si

N

Ap

N

Dn

N

Ap

+ N

( (^) Dn )

q DP

( v AB

) = # AqN Ap

x p

v AB ( ) =^ # A^^2 q * Si

( b

_v

AB_ ( )

N

Ap

N

Dn

N

Ap

+ N

( (^) Dn )

Ideal p-n junction diode i-v relation:

n (- x p

n i

2

N

Ap

e

qvAB / kT , n '(- x p

n i

2

N

Ap

e

qvAB / kT " 1 ( ) ; p ( x n

n i

2

N

Dn

e

qvAB / kT , p '( x n

n i

2

N

Dn

e

qvAB / kT " 1 ( )

i D

= Aq n i

2

D

h

N

Dn

w n , eff

D

e

N

Ap

w p , eff

( e

qv AB / kT

  • 1 [ ] w m , eff

w m

" x m

if L m

w m

L

m

tanh w m

" x m ( ) L m [ ] if^ L m

~ w m

L

m

if L m

<< w m

q Q NR, p - side

= Aq n '( x ) dx ,

  • w p
  • x p

q QNR , n - side

= Aq p '( x ) dx , Note : p '( x ). n '( x ) in QNRs

x n

w n

Large Signal Model for MOSFETs Operated below Threshold (weak inversion):

(n-channel) Only valid for for v GS

≤ V

T

, v DS

≥ 0, v BS

i G

( v GS

, v DS

, v BS

) = 0 , i B

( v GS

, v DS

, v BS

i D , s # t

( v GS

, v DS

, v BS

) " I

S , s # t

e

q v GS

_V

T_ ( v BS { )} n^ kT^ 1 # e

_qv

DS_ / kT

where I S , s # t

W

2 L

μ e

kT

q

2

Si

qN A

p

_v

BS_

K

o

V

t

2

p

_v

BS_

with V t

kT

q

, K

o

W

L

μ e

C

ox

, - $

Si

qN A

C

ox

, n " 1 +

p

_v

BS_

Large Signal Model for MOSFETs Reaching Velocity Saturation at Small v DS

(n-channel) Only valid for v BS

≤ 0, v DS

≥ 0. Neglects v DS

/2 relative to (v GS

-V

T

Saturation model : s y

( E

y

) = μ e

E

y

if E y

" E

crit

, s y

( E

y

) = μ e

E

crit

_s

sat_

if E y

$ E

crit

i G

( v GS

, v DS

, v BS

) = 0 , i B

( v GS

, v DS

, v BS

i D

( v GS

, v DS

, v BS

0 for v GS

& V

T

( ) <^0 <^ v

DS

W s sat

C

ox

v GS

& V

T

( v BS

[ )] 1 +^ '^ v

DS

crit

( L )

[ ]

for 0 < v GS

& V

T

( ),^ (

crit

L < v DS

W

L

μ e

C

ox

v GS

& V

T

( v BS

[ )] v

DS

for 0 < v GS

& V

T

( ),^ v

DS

crit

L

with ' # 1 V A

CMOS Performance

Transfer characteristic:

In general : V LO

= 0 , V

HI

= V

DD

, I

ON

= 0 , I

OFF

Symmetry : V M

V

DD

and NM LO

= NM

HI

" K

n

= K

p

and V Tp

= V

Tn

Minimum size gate : L n

= L

p

= L

min

, W

n

= W

min

, W

p

= μ n

μ

( p )

W

n

or W p

= s sat , n

s

( sat , p )

W

[ n ]

Switching times and gate delay (no velocity saturation):

" Ch arg e

Disch arg e

2 C

L

V

DD

K

n

V

DD

# V

Tn

[ ]

2

C

L

= n W n

L

n

+ W

p

L

( p )

C

ox

= 3 nW min

L

min

C

ox

assumes μ e

= 2 μ h

" Min. Cycle

Ch arg e

Disch arg e

12 nL min

2 V DD

μ e

V

DD

# V

Tn

[ ]

2

Dynamic power dissipation (no velocity saturation):

P

dyn @ f max

= C

L

V

DD

2 f max

C

L

V

DD

2

Min. Cycle

μ e

W

min

ox

V

DD

V

DD

% V

Tn

[ ]

2

t ox

L

min

PD

dyn @ f max

P

dyn @ f max

InverterArea

P

dyn @ f max

W

min

L

min

μ e

ox

V

DD

V

DD

% V

Tn

[ ]

2

t ox

L

min

2

Switching times and gate delay (full velocity saturation):

Ch arg e

Disch arg e

C

L

V

DD

W

min

s sat

C

ox

V DD

# V

Tn [ ]

C

L

= n W n

L

n

+ W

p

L

( (^) p )

C

ox

= 2 nW min

L

min

C

ox

assumes s sat , e

= s sat , h

Min. Cycle

Ch arg e

Disch arg e

4 nL min

V

DD

s sat

V

DD

# V

Tn [ ]

Dynamic power dissipation per gate (full velocity saturation):

P

dyn @ f max

= C

L

V

DD

2 f max

C

L

V

DD

2

Min. Cycle

s sat

W

min

$ ox

V

DD

V

DD

% V

Tn [ ]

t ox

PD

dyn @ f max

P

dyn @ f max

InverterArea

P

dyn @ f max

W

min

L

min

s sat

$ ox

V

DD

V

DD

% V

Tn [ ]

t ox

L

2

Static power dissipation per gate

P

static

= V

DD

I

D , off

" V

DD

W

min

L

min

μ e

V

t

2

Si

qN A

2 V

BS

e

$ V { (^) T } nV t

PD

static

P

static

Inverter Area

V

DD

L

min

2

μ e

V

t

2

Si

qN A

2 V

BS

e

$ V { (^) T } nV t

CMOS Scaling Rules - Constant electric field scaling

Scaled Dimensions : L min

" L

min

s W " W s t ox

" t ox

s N A

" s N A

Scaled Voltages : V DD

" V

DD

s V BS

" V

BS

s

Consequences : C ox

" sC ox

K " sK V T

" V

T

s

" # _s P

dyn_

" P

dyn

s

2 PD dyn @ f max

" PD

dyn @ f max

PD

static

" s

2 e

( s $ 1 ) V T s n V t PD static

Device transit times

Short Base Diode transit time : " b

w B

2

2 D

min, B

w B

2

2 μ min, B

V

thermal

Channel transit time, MOSFET w.o. velocity saturation : " Ch

L

2

μ Ch

V

GS

# V

T

Channel transit time, MOSFET with velocity saturation : " Ch

L

s sat

Single transistor analog circuit building block stages Note: g l ≡ g sl

  • g el, ; g l ’ ≡ g o
  • g l

MOSFET

Voltage

gain, A

v

Current

gain, A

i

Input

resistance, R

i

Output

resistance, R

o

Common source "

g

m

g

o

+ g

l [ ]

= " g

m

r

l

'

( )

# # r

o

g

o

Common gate * g

m

+ g

mb [ ] r l

'

g

m

+ g

mb [ ]

* r

o

g

m

+ g

mb

+ g

o [ ]

g

t

Source follower

g

m [ ]

g

m

+ g

o

+ g

l [ ]

g

m

+ g

o

+ g

l [ ]

g

m

Source degeneracy

(series feedback)

r

l

R

F

# # * r

o

Shunt feedback "

g

m

" G

F [ ]

g

o

+ G

F [ ]

* " g

m

R

F

g

l

G

F

G

F

1 " A

v [ ]

r

o

|| R

F

g

o

+ G

F [ ]

BIPOLAR

Voltage

gain, A v

Current

gain, A i

Input

resistance, R i

Output

resistance, R o

Common emitter "

g m

g o

  • g l [ ]

" _g

m_

r l

'

( )

$ g l

g o

  • g l [ ]

r %

r o

g o

Common base

g m

g o

  • g l [ ]

_g

m_

r l

'

( )

r %

[^ $ +^1 ]

#[ $ + (^1) ] r o

Emitter follower

g m

  • g % [ ]

g m

  • g %

  • g o

  • g l [ ]

$ g l

g o

  • g l [ ]

$ r

%

+[ $ + (^1) ] r l

' r t

  • r %

[^ $ +^1 ]

Emitter degeneracy # "

r l

R

F

$ # r

%

+[ $ + (^1) ] R F

_r

o_

Shunt feedback "

g m

" G

F [ ]

g o

+ G

F [ ]

" _g

m_

R

F

g l

G

F

g %

+ G

F

1 " A

v [ ]

r o

|| R

F

g o

+ G

F

OCTC/SCTC Methods for Estimating Amplifier Bandwidth

OCTC estimate of " HI

HI

i [ ]

$ 1

i

%

= R

i

C

i

i

%

with R i

defined as the equivalent resistance in parallel with C i

with all other parasitic

device capacitors (C π 's, C μ 's, C gs 's, C gd 's, etc.) open circuited.

SCTC estimate of " LO

LO

j

j

$

= R

j

C

[ (^) j]

% 1

j

$

with R j defined as the equivalent resistance in parallel with C j with all other baising

and coupling capacitors (C Ι

's, C O

's, C E

's, C S

's, etc.) short circuited.

Difference- and Common-mode signals

Given two signals, v 1 and v 2 , we can decompose them into two new signals, one (v C

that is common to both v 1 and v 2 , and the other (v D ) that makes an equal, but opposite

polarity contribution to v 1 and v 2

v D

" v 1

v

2

and v C

v 1

  • v 2

[ ]

$$ % v 1

= v C

v D

and v 1

= v C

v D

Short circuit current gain unity gain frequency, f T

" t

g m

C

gs

= 3 μ Ch

V

GS

$ V

T

( ) 2 L

2 = 3 s Ch

2 L MOSFET, no vel. sat.

g m

C

gs

= W s sat

C

ox

W LC ox

= s sat

L MOSFET, w. vel. sat.

g m

C

%

+ C

; lim I c &'

g m

C

%

+ C

[ (^ μ)]

# 2 D

min, B

w B

2 BJT, large I C

/ tr

Revised 12/9/