Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Euler-Hamilton Equations and Classical Dynamics, Assignments of Classical Physics

The Euler-Hamilton equations and their application to classical dynamics. Topics include Lagrangian mechanics, Hamiltonian mechanics, and the relationship between the two. Euler and Hamilton's contributions are discussed, as well as the derivation of the equations and their significance.

What you will learn

  • How does Lagrangian mechanics differ from Hamiltonian mechanics?
  • Can you provide an example of how to apply the Euler-Hamilton equations to a physical system?
  • What is the significance of the Euler-Hamilton equations in classical dynamics?
  • What are the key differences between Euler's and Hamilton's approaches to mechanics?
  • What are the Euler-Hamilton equations and how are they derived?

Typology: Assignments

2019/2020

Uploaded on 10/30/2020

abhimanyu-singh-6
abhimanyu-singh-6 🇮🇳

1 document

1 / 24

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
elAsSMAte
Date
Cas
ica
Pymamic
Page
Neus
preApezive On
leotanls
iAeos
ery
dlevelope
cluriug 1So year
GHer
deuaa
e laos
oeion
were
etonmuRatee
more
pouweru
tedhmique
and
ideay levelopesk
by
Euler
Lagoange,
HamiLton
anel
jacebi.
it
proyide
he
batle
princiler
uaks a
nder
leg
Meuotaxlafamiliar
Sauch
o
me
tiou
V.
Lmp
Uae
eorwaliam
a we
wit
develore
hev_Grethe
locAia
r
all
atundaunetl
ede
hiR
Eve
a
Elechomague
tl_anddgeueralrlaH
he
tunda
meda
opaxticde
plkgaicg
Gdwere
speulatire
pursuidg
3c
c Sxing eeryis
best
dasLdbed
in
heagay
we
ua
develape i
ta
Coure
he
new
he
alsa
provide
tebridae
Lsoctaand
ue
qaukuw
Lor
we
wiu
Aee_
byetuwe.eu
He
clasaical
nca a
Csical
Dgnamic
i w
ae
giveu
ad
af
an
initial time
to,
Can
integaak
Neshns
Cquation
t
deler
mine
Ttralt
la
a
emad
fiuike).
n&a
ly
indi
pendewd
tranafurmaki
oxineial
pame)
S S S
Gmatuey
i
ethl
aune
S>înerthk
Hqwe
aideauy
O3x
3Ortugeal
ma
A Canatat vedo
7AGstt
Ve
locit
3thanslutions
Undurwich
T7+
3
buo
Sts
u 1
Heanalakon'
-9+C
C Cer
ate
ea
nuwbC
pf3
pf4
pf5
pf8
pf9
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf17
pf18

Partial preview of the text

Download Euler-Hamilton Equations and Classical Dynamics and more Assignments Classical Physics in PDF only on Docsity!

elAsSMAte

Date

Cas ica Pymamic Page

Neus preApezive^ On^ leotanls^

iAeos

ery

dlevelope cluriug 1So year GHer deuaa

e laos

oeion were etonmuRatee more^ pouweru

tedhmique

and ideay levelopesk by Euler Lagoange, HamiLton anel

jacebi.

it proyide he batle

princiler uaksa nder leg

Meuotaxlafamiliar Sauch^ o^ me^

tiou

V. Lmp

Uae eorwaliam a we wit^ develore^ hev_Grethe

locAia r

all atundaunetl (^) ede hiR Eve a

Elechomague tl_anddgeueralrlaH

he tunda meda opaxticde plkgaicg Gdwere

speulatire pursuidg 3c c Sxing eeryis best dasLdbed

in heagay (^) we ua develape^ i^ ta^ Coure^

he new

he alsa provide tebridae

Lsoctaand ue qaukuw Lor

we wiu Aee_

byetuwe.eu He^

clasaical

nca a Csical Dgnamic

i w^

ae giveu

ad (^) af (^) an initial^ time^ to,

Can integaak Neshns Cquation t

delermine Ttralt la a emad fiuike).

n&a ly indi pendewd tranafurmaki oxineial pame)

S S S^

Gmatuey i^ ethl^ aune

S>înerthk Hqwe aideauy

O3x3Ortugeal ma

A Canatat vedo

7AGstt Ve locit

3thanslutions Undurwich

T7+ 3 buo Sts

u 1 Heanalakon'

-9+C

C Cer ate^

ea nuwbC

claSSMA

Date

Page

Cnalilean (^) oup lo elewet (^) grou

a g anetorwatonkuer wlh

Ne uoton Law ivarie

Can herakiau Law

e. .0aLe

are heUndderging ea (^) or Conkervahbn (^) L

Loreutz (^) basrsmoatioai t^ +orani (^) laben

Eias (^) teiu (^) Lawl hoben

Gre isvAied

Hami tomon H when ener i Costdered to be uutt on claSSMAte

a mometun p

Date.

Page

iwegak 2 term b art

s

Uvdz=

u (^) vdx Svds

JI L

S0iach (^) _ony i

d alL -

3

ag ramge euakou

cke o gghus N

T(4-V)

aoove auatio

dt )=-dV)

OL

Wet

alassMAte

Date

Page

' impue e Cqutvodemcea a Lagenglono OquHo

Aew Cquatton

w a

er fance^

Loaangia ecleuni

Laganglam Cquations^

holds in^ ang Co-Odnade^

ayaie

ease ha ohich we^ Cam^

cle i^

Canaaint

Evemdng we kuow

abouf Umiverae

Calued

i e Lagasatss

L R

Einstein MaxueU Oa ezpedvely

Fey*a

weckamic

ae parhiclewu ake^

cull

pobahi

dettrsned (^) by S pwe

H29, P L

SH

elasSMAte

Date

Page

Exaple

eeparticie

L

(aJ z)

by dawig uy_

have loaFau

Now meaaure he^

maodisu

o

e (^) Parkcle w zpecto

a Ca-oreinak^

Aguttun

Ve laeity^

=(o, e,^ cO)

alhcut

Zass_adi -(z^

z')

T CoS cot +9 Si CasurSuF}

ahove agraaa

2

m

2-

We denve

m (o

C

clASSMALe

Date

Page

OL ( ox^

)+20x

Comiolrsg

Cetifal

fi cHo

Called (^) Atous- beccuue (^) Hhe a

ke efcnce ae

C

Com Aequenc

Dater han (^) htoecto

e

O e 9Ae

EHiug orce

aASSMAte Date

Page

Conatraint 3

TCB

TSi-

x Pendu

T m^ mg

T

T

9 9 S

clasSMAte

Date

27generalivel Co-rdin Page

he endu luCLaule

L m^

p )+g^

4+ha(z2e-a*)

nch we^ Ca^ Clcloe^

eaakanw Hon

+Aj

Halam.eic Coatoint.

3N-n

be Solves^ i^

terus Couepunt a- Com

gentraiz

A - An)

Jeall

=LA*) A, f(x+)

We

treote xK^ ike^

ne

-ondiuate

3:

Lagaarzelz Oquatoj^ or^

Gre

()=

1)-L

classMAte

Date

Page

Non-Holenoai

Cou itE&

Caplame

O 1aeualne

Nelecity dependent Cauaradkz

h n wot be

keg ah to

SumNOT

A (^) yak i^ desibes^ b^

M-Geneeli ed^

Co-ordinak

uldeh dee^ apoi^

nan

Coun9uvcttaa

Hae e Qxolutan isa Curve is

-Conpled arcler^ usal)us^

in@av (^) Albata

equokion.

Dcine

P P

enero zed noRtUw Ca (^) att

CD-juaide

Cwi Cal wngneuu in Cartel oelk o-d

SSMA

S (Ld

Date

SS L d

LiA o gan Uaue

ve wwake tans foraiau

df

d

ction

achar

lASSMATe

Date

Page

Supol.e dL

iigembla _or Cycl)

en we hay e on&exvcel quatty

P t

paeo

elasSMAte

Date

Page

NoeHevk hepre

Conide a Ona^ parametey^

map-

Such tat

+ransrautasn

ai

be_ (^) a Cokinug

Noehaer'a

stae tuk Cac

S

Con secve quaity_-

So weave

SsO

d

d

)

qua tz

evauateal af

S=O

CongtakfovaltweQ.

elasSMAte

Date

Page

omog enety^ of^

apae

traneDaiona

invas icuce^ o

CoAtryatan of^

ta

near

Duea

Lsetaop4 pate

Lag raulon^

ik THtek^ byue^

n

vaied{_Undler

otatons

a

tt b^

ame ano

uuk

L

)= L^

«

)

n 2er ve_ quamkh'

Compoueta ot

ula

o etnin dica tor

S e 4 cb tey

ate

Autoi oavatante Space

Uguav wowe

aye pered

a o 3er (^) ve quat