












Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
It includes concepts of Quantum Mechanics, formalism, important formulae, particle in a box, 1D, 2D, 3D, symmetric box, simple harmonic oscillator, expectation values, identical particles and many more
Typology: Schemes and Mind Maps
1 / 20
This page cannot be seen from the preview
Don't miss anything!
Conun Mehanica
apoasemtuhort, omamlalts^ aamHehesnbergg Hehesnbeng
Mabur strpaentation^ :^ Drrac's^
tme- îrdependod)
Auh as^ pavdule^ in^ a^ bec,^
haumoru8haumonu8^ alklaalhla^ dale
Tunneling trough^ a^
Carnbval pelental, Astddtcd
aebta, Spin AdlstinAein
Anqulas mernenuen
ekt, Spn-Abt merneakuen amd
Coupting, ine^
Bruduze Tme-Incdegemdlorl^
malhad, WEB^
apruerimaion, Tte^ dependerl
Tre dependend
amd Fexmis^ holden^ suda^ ,
Belecthen suules^ ,
clantal (^) thasty an^ adicton^ ,^ Elornamk^
thastha e4Scallbug^ Scalli
phase Ah,^ pada^ ane^
Paulpauis 3 entcusion^ pointiple^ ,^ Spin-8tattis^
uarlum mecbams^ ,^ klein-dden^
am Dreoc^ apuctons
Photbelecbue Eect
Kna b9-^
minO
is Judk^ undher^ t^ emeve^
am eledkan^ (bound
A= -(1-%d) ( Smiliqbear orhenvadfon (^) q emsgy^ deeanat^
helds gocd.
Saloure ange^ fosdhck^ to^
mutbo SecedPq^ agle^ feticle^ in^
est
Bloct bedy adiakion. Hydxogem akom. Bou paslicle ESCe Pavdde Photoelkibuc. yat
ExComplen d
PE Oo
ababa mugp ompletel*
Emusq Apeasuu^13
rlnuu
Cannot aSdb^ tha^ emA
PEFO 2 EmgApeckun^ dia
Stoce (^) PE rg^ duned by^ the^ Vru PHton Puay uo ePphelers^ incderdt^ on^ The^ 8aa^
h 1a 4o E ev 6 xIoJ Pavdtle (Repbchen^ ,^ Rajpaduor (Oal) uaneIoounce,^ duaduen)^33
temsen p ,DvjAon^ 6eve
flon selatrute Portul h amE
KEKto PamE AE (^) am
Redate povdde ane (^) pspodus (Bam rnixpudera) (,t) fes^ the^ înedhrrotfon^ he 8ystem.
babiily dersil
muyt be^ inude^ (uenueainq)^ dl (mlie)) muste Bquo e^ nkeglle must e^ Comtums^ &^ 6igle^ valuad (ootfnucus and^ Sgle^ vald 9 Femula
d d: -(atbx4)
P Po e
3L Huducgen aöm JToe^ solebly^ ithun^ Bhroduy N )o
Annde o
eclaler a 7
C c =o S(x-
S dot^ -^ |^ (Rud^ urden^ the^ Lue)
Sld- edoc^ Fouruan^ trarm
c hys a
a Sx)S (x-,)^ -^ 4)^ Str-1)^ da
dx
S(-a Sx+@ + s-d) Shriodinge oation^ amd^ Applicaton^ Rigid^ Iniielourasy (erditishaiaht h o- H E (^) 0,P- L 2 - +V= EY am x Gotinuua^ bourdasuy^ Cordtiy Cwoud densi J.^ yv-yvJ 'Rrie^ hiht Tm J: Veadyx 1
THnc mlulen
CST&inT= - (^) E 38ev Innun pioclucd ylv(O7^ -^ o (^) ithogono m^ 9.1^ A/o
Bound steles(o Bound sicaa cdepemd on debtb( idth (9)
V Bound 8tate
Oisac (^) d atsodne pe ental Bullato (Gaurd cat) 0at (^) e
Asymmauc Bound scts
VE E-V) (^) RAT- T (^) HKka 4JEE-V JE+E-V Spheuc Pokgtil
(
aTaShnDY
ama
ta d Vait mR
Mathemakc al lemulatin Qn
nl (^) suafon (Gpobuun o^ the^ 4tem) olot the oPUats^ lommades^
cisrde, otheuise^ il^
is (mkinueu ,4J-o ,w-
Hy E L= mh
dis(ele Apedbuum
inean henale Al,+)-7 +A
-> mean
Henmiliam epenaleh (A) A^ -^ A^
Ante Herdian (A)A -A^
Ante Henmatian
pPJ
hy -Ph
BA =^ O^ AB=80^ A&B^ A& B^ ComnusCommulaEach^ ilkth othen.
A,)- o^ [A^ ,^
4()) =^ o
(A, B):^ -^ [6,^ y ,^ )-o^ [z,e).o (), 8)^ -^ Pl)^ [a,6)
L P-Z
ih h Lz
Prulade Guonun medaunu
Kepxuientaln e n mamamlurn Apara
QD-Bes un
L E-+nme am dlegmngy 1,2,1,3,3, Erugp 26 56 8e^ o6^ 1Be^ HE 30 Bo
Enag3 3E,^ 6,1,!',^ 12,^ ma HE Unesdauah
a mh-mk 2
Cam bebe meawred^ acCunateky^ ,
dimaltmuau
E henat^ hdan^ Brides^
Hu chsica)^ Mechanics^ and^ Quontum^
mabariu
d d
veloit
FAe
nea Has monic^ Balorte^ Lh)^ Tt^ Judu^ SH^ roth,^ 9inuoidal^ dullalior eo-os Eaulluiun^ poird,^ ithKE-Ve^ entannt^ nmld
pemlulum ma back
Jassitall alleund
Radiqushmula HounifePelynormid h(7)-( H
H-8-
toh
a a a-- a aa)^ -^ a
a'a d,^ ad-^ -a la,RJ. bwa Sd,A]- -taa
DxA,^ (3n+)^
Gambtoalan (p i ineu (omlinatfon V mud py JD4ab+ ba hmnri(beSo m d
an nti nH
dlo
a 1 Va
D HamoniC oRutt Oegemanac = n+)
Eno (yt)^ hu
Oeren
Ener9y hx+^ nn+ ymmebuc ütl A an^ andir^ must^ be^ Taro a^ Xo eni8 0 in^ i^ odd^ E^ na)tw n-1,3,5..-.odd
Atd b^ Cenkal^ ter^ pubpms Gu the^ arvaqe^ value^ of^ T^
and (^) v
T+V E =8T t7)he
Lded cad paticles.
Ruanlun (Irdutinguuake)
Matwd eetyrann ABedktues (^) Fermuors BE-datst FD-ABatatce Spin- n No rericluen
Spin k cauli ntluvon finup Symmakuc ( An sa (^) Ah (^) rennu nxsn
Spio panud Encharae qresal
Sym (B8c) Arcd (fenmiona) apadda în kame slate SHmaku dl
not pa%ible ) fautcles^ in^ duso^ 8iale
olrt angular Momemtim 7xP L,h ,4) &,4) o y4)-h| (^) ,1-
em umder bansalen
Then krens^ monentum^ is,^ msened. the Haritonium^ insi.enit^ rclst (^) Nden hon ha anertfon sheud&^ Esten^
Abene hudors^ ane^ alo^ Vald^ p^ konstias f ae^ rot^ Hexmitun^ ,^ Thay^ ane (^) Hexmdiom oriugk (^) kac
1-L1y (L L+
LL4 - - -z (^) LLY [I4)+m)
v() is^ aven^ tnd^ the^ (emeoned^ qyounthy
aa not^ onyened,,^ Lia^ (oxeed
(eTHed,i CenieiNed +z s meEd aonotp v( p+z? a as leever v(all not enke
ytrton vatlues LLP-hl LL--4L
{m-
L D-m(nM)
donot ane igen ilue tqual ,m
L
arnpl
ASysBemm Under Yolation
EiKPE (^) TW= L
KEol H
E t+) vh)
TTy L^ +J2^ l^ óymrebae^
T
Lz
QT EH
e TBS+^ ir^ Sine
) race^ o^ - tsace T= a
Hudbogen dem^ (Vedh^ aleuo^ Madel-Lardae)
151h s(b5) cbiw angulon mernnlun M PHadt
apun arylas memenlum D,4-s
s (8n) GR&
e
( Apelicain aTdenti the lae hyduogn adorn R 9t (^) oSung dg e
em^ =2n=3,^ m
Hatem K=| (^) TO He^ e He aem
E - 6.8 ev E- 186xEp E^ 3Gev T Ta3 e 86 To^ 0.53n
is am^ Sgen tata^ q^ H
m (^) i ma 2:^ Th