Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Concepts of Quantum Mechanics, Schemes and Mind Maps of Quantum Mechanics

It includes concepts of Quantum Mechanics, formalism, important formulae, particle in a box, 1D, 2D, 3D, symmetric box, simple harmonic oscillator, expectation values, identical particles and many more

Typology: Schemes and Mind Maps

2021/2022

Available from 04/23/2022

rumana-farheen
rumana-farheen 🇮🇳

3 documents

1 / 20

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Conun
Mehanica
An
lido
olunb
Ane.
Juunlamn
în
oknate
am
momerlum
Space
apoasemtuhort,
omamlalts
amHehesnbergg
a
Hehesnbeng
Uneaunly
puxplo,
Mabur
strpaentation
:
Drrac's
bta
am
kd
amd
het
atan
Scuidingen
Egohion
(trne
derorerd
and
tme-
îrdependod)
tiqem
Value.
pmeblem
Auh
as
pavdule in a
bec,
haumoru8
alkla ale
haumonu8
alhla
d
Tunneling
trough a
basoia,
moffon
in
a
Cernbvas
pdortas,
dtcd
Carnbval
pelental,
Astd
amgubx
menernlum,
Angulax
mornerum
ogebia,
Spin
Aein
aebta,
Spin
Adlstin
amgulos
memenlunn,
Anqulas
mernenuen
ekt,
Spn-Abt
merneakuen
amd
Coupting,
ine
Bruduze
Tme-Incdegemdlorl
pexobation
thact
amd
pextuokation
thact
applicotiers ,
Varinlema
malhad,
WEB
apruerimaion,
Tte
dependerl
Tre
dependend
pedunbatein
thaty
amd
Fexmis
holden
suda
,
Belecthen
suules
,
Semi-
Semi
clantal
thasty
an
adicton
,
Elornamk
thas
4Scallbug
tha
e
Scalli
phase
Ah,
pada
ane
, BAm
appserimatar
Tdertca
partls
Paul
3
pauis
entcusion
pointiple , Spin-
8tattis
Cemnachem
i
Relatisue
Relativsl
uarlum
mecbams
,
klein-dden
am
Dreoc
apuctons
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14

Partial preview of the text

Download Concepts of Quantum Mechanics and more Schemes and Mind Maps Quantum Mechanics in PDF only on Docsity!

Conun Mehanica

An lido olunb Ane.^ Juunlamn^

în oknate^ am

momerlum Space^

apoasemtuhort, omamlalts^ aamHehesnbergg Hehesnbeng

Uneaunly puxplo,^

Mabur strpaentation^ :^ Drrac's^

bta amdam^ kd

het atan^ Scuidingen^ Egohion^ (trne^

derorerd and^

tme- îrdependod)

tiqem Value.^ pmeblem^

Auh as^ pavdule^ in^ a^ bec,^

haumoru8haumonu8^ alklaalhla^ dale

Tunneling trough^ a^

basoia, moffon^ in^ a^

Cernbvas pdortas,^

Carnbval pelental, Astddtcd

amgubx
menernlum, Angulax^ mornerum^

ogebia, Spin^

aebta, Spin AdlstinAein

amgulos memenlunn,^

Anqulas mernenuen

ekt, Spn-Abt merneakuen amd

Coupting, ine^

Bruduze Tme-Incdegemdlorl^

pexobation thact^

pextuokation thact amd

applicotiers ,^ Varinlema^

malhad, WEB^

apruerimaion, Tte^ dependerl

Tre dependend

pedunbatein thaty^

amd Fexmis^ holden^ suda^ ,

Belecthen suules^ ,

SemiSemi-

clantal (^) thasty an^ adicton^ ,^ Elornamk^

thastha e4Scallbug^ Scalli

phase Ah,^ pada^ ane^

, BAm^ appserimatar^
Tdertca partls

Paulpauis 3 entcusion^ pointiple^ ,^ Spin-8tattis^

Cemnachem i^ RelativslRelatisue

uarlum mecbams^ ,^ klein-dden^

am Dreoc^ apuctons

ouatum lebanics

Fouer peublems Ceuld not le enplauned bclowcab Phys

Photbelecbue Eect

auw oConnealuen e Emeq deaet hdldl gpod

Kna b9-^

minO

is Judk^ undher^ t^ emeve^

am eledkan^ (bound

Compten Ect

A= -(1-%d) ( Smiliqbear orhenvadfon (^) q emsgy^ deeanat^

helds gocd.

Saloure ange^ fosdhck^ to^

mutbo SecedPq^ agle^ feticle^ in^

est

Bloct bedy adiakion. Hydxogem akom. Bou paslicle ESCe Pavdde Photoelkibuc. yat

ExComplen d

PE Oo

ababa mugp ompletel*

Emusq Apeasuu^13

rlnuu

Cannot aSdb^ tha^ emA

PEFO 2 EmgApeckun^ dia

Cemletl (faodial^ als^ éqpluen)
ie Cunnct^ ndxod^ p^ len^

Stoce (^) PE rg^ duned by^ the^ Vru PHton Puay uo ePphelers^ incderdt^ on^ The^ 8aa^

h 1a 4o E ev 6 xIoJ Pavdtle (Repbchen^ ,^ Rajpaduor (Oal) uaneIoounce,^ duaduen)^33

temsen p ,DvjAon^ 6eve

Oe brope^ dual^ naaxP kh

flon selatrute Portul h amE

KEKto PamE AE (^) am

E1ee foadid ( V= O)

Redate povdde ane (^) pspodus (Bam rnixpudera) (,t) fes^ the^ înedhrrotfon^ he 8ystem.

P )^ pro^

babiily dersil

Tolad pxobaboldy

muyt be^ inude^ (uenueainq)^ dl (mlie)) muste Bquo e^ nkeglle must e^ Comtums^ &^ 6igle^ valuad (ootfnucus and^ Sgle^ vald 9 Femula

60 d h

d d: -(atbx4)

Pecbakih (1Doz

P Po e

3L Huducgen aöm JToe^ solebly^ ithun^ Bhroduy N )o

Mgt obabk valus

Annde o

eclaler a 7

Drac-dah undtan

C c =o S(x-

) A s(x-

S dot^ -^ |^ (Rud^ urden^ the^ Lue)

S-1)S1)^ S)^ enen^

Sld- edoc^ Fouruan^ trarm

S(as S^ S

c hys a

o othaue

a Sx)S (x-,)^ -^ 4)^ Str-1)^ da

S4 S"(-^ J^ +*)^ S(x-x.)^

dx

S(-a Sx+@ + s-d) Shriodinge oation^ amd^ Applicaton^ Rigid^ Iniielourasy (erditishaiaht h o- H E (^) 0,P- L 2 - +V= EY am x Gotinuua^ bourdasuy^ Cordtiy Cwoud densi J.^ yv-yvJ 'Rrie^ hiht Tm J: Veadyx 1

tmagiray fad yvy)

THnc mlulen

ska ent)E,

CST&inT= - (^) E 38ev Innun pioclucd ylv(O7^ -^ o (^) ithogono m^ 9.1^ A/o

Bound steles(o Bound sicaa cdepemd on debtb( idth (9)

  • (E-V)Y-o

V Bound 8tate

EV
  • Satoug 8-lala PaasdeCumd ons. od
  • to +o clella polesrdta F Bound tite) VCT) -- a S(w

S

Oisac (^) d atsodne pe ental Bullato (Gaurd cat) 0at (^) e

  • malacl qpT (t)= e E=ma Sine^90 deto^ lenia^ is Enegy mumum

BoandUn-E< OE D Summasic^ Bound^ sle

Asymmauc Bound scts

Slep plerdi

R 5 E-e-

VE E-V) (^) RAT- T (^) HKka 4JEE-V JE+E-V Spheuc Pokgtil

(

aTaShnDY

ama

ta d Vait mR

dagnuecy !, a, a,a,a E

Mathemakc al lemulatin Qn

0- Ay^ iem^

nl (^) suafon (Gpobuun o^ the^ 4tem) olot the oPUats^ lommades^

kith Hamiltonan,^ then^ the^ Speabuum^ f

cisrde, otheuise^ il^

is (mkinueu ,4J-o ,w-

Hy E L= mh

dis(ele Apedbuum

inean henale Al,+)-7 +A

-> mean

Henmiliam epenaleh (A) A^ -^ A^

HemiiamEigen Valo.o^

herumilan ofen i NEO

Ante Herdian (A)A -A^

Ante Henmatian

HT-HSl adjad

pPJ

hy -Ph

ommutals Algebra
(a,6)- AB-^

BA =^ O^ AB=80^ A&B^ A& B^ ComnusCommulaEach^ ilkth othen.

Cp,c)o

A,)- o^ [A^ ,^

4()) =^ o

(A, B):^ -^ [6,^ y ,^ )-o^ [z,e).o (), 8)^ -^ Pl)^ [a,6)

(z, e)-h

L P-Z

ih h Lz

h
L,L)-*+ihz)

(,g-R

Prulade Guonun medaunu

Poebccbehy ,^ P^ ampl^ Aeng emu qE- Z

Kepxuientaln e n mamamlurn Apara

Vamh 2()e

QD-Bes un

L E-+nme am dlegmngy 1,2,1,3,3, Erugp 26 56 8e^ o6^ 1Be^ HE 30 Bo

degemera 1,3,^33 ,

Enag3 3E,^ 6,1,!',^ 12,^ ma HE Unesdauah

a mh-mk 2

Cam bebe meawred^ acCunateky^ ,

dimaltmuau

d <a,A)>^

  • (^) (

E henat^ hdan^ Brides^

Hu chsica)^ Mechanics^ and^ Quontum^

mabariu

d d

d

veloit

FAe

nea Has monic^ Balorte^ Lh)^ Tt^ Judu^ SH^ roth,^ 9inuoidal^ dullalior eo-os Eaulluiun^ poird,^ ithKE-Ve^ entannt^ nmld

j -E=vCTP KE-o Qastaly nt peth

doxsid lsden

pemlulum ma back

Jassitall alleund

-a

Hn)rid -) e e

Radiqushmula HounifePelynormid h(7)-( H

d

H-8-

aT a axu^ Hbxmitian^ jucalks^ o^

toh

Sho mo^ 4iA) Nst^ Hexmitian

a Iny- JntI Int Gaaen a a-

a a a-- a aa)^ -^ a

a n-hlo Amhilekon.

a'a d,^ ad-^ -a la,RJ. bwa Sd,A]- -taa

aa- o

(a-a- - (8n+) aal)=^ 6n

muo (9nt1)

DxA,^ (3n+)^

  • (^) (n+a)T

Gambtoalan (p i ineu (omlinatfon V mud py JD4ab+ ba hmnri(beSo m d

an nti nH

aloy TD VT

dlo

1e a'h

a 1 Va

Iny at) 1o

D HamoniC oRutt Oegemanac = n+)

h +(la)h

Eno (yt)^ hu

30 Haenue^ illa^ iolpte)^ u=^ 2.

Oeren

(N+) N+

Ener9y hx+^ nn+ ymmebuc ütl A an^ andir^ must^ be^ Taro a^ Xo eni8 0 in^ i^ odd^ E^ na)tw n-1,3,5..-.odd

Er ânttw n,a

Voial therem

Atd b^ Cenkal^ ter^ pubpms Gu the^ arvaqe^ value^ of^ T^

and (^) v

LHo Vk

T+V E =8T t7)he

aH-atem, V^ -^ ze^ =

TY

Lded cad paticles.

Ruanlun (Irdutinguuake)

A
dassicad (Ditiuskable)

Matwd eetyrann ABedktues (^) Fermuors BE-datst FD-ABatatce Spin- n No rericluen

Spin k cauli ntluvon finup Symmakuc ( An sa (^) Ah (^) rennu nxsn

po pir m

Spio panud Encharae qresal

Sym (B8c) Arcd (fenmiona) apadda în kame slate SHmaku dl

not pa%ible ) fautcles^ in^ duso^ 8iale

Aneulas Momentum (0)

olrt angular Momemtim 7xP L,h ,4) &,4) o y4)-h| (^) ,1-

  • lz,)-h^ (i)-n
the Hamiltonan^ a^ Bytlem^ ik^ invai^

em umder bansalen

Then krens^ monentum^ is,^ msened. the Haritonium^ insi.enit^ rclst (^) Nden hon ha anertfon sheud&^ Esten^

eum o ad but^ ot^ koth

Abene hudors^ ane^ alo^ Vald^ p^ konstias f ae^ rot^ Hexmitun^ ,^ Thay^ ane (^) Hexmdiom oriugk (^) kac

Lodex operd htiy () -ly

1-L1y (L L+

KL = tl0+) m{m-i

LL4 - - -z (^) LLY [I4)+m)

L_ M7:^ h^ }(l)^ - mm-t)^ 10,^ m-7.

v() is^ aven^ tnd^ the^ (emeoned^ qyounthy

v() depomds^ only^ onY

dusnot deperoly or^ velsaly^5 ha^ JH^ Cerheoned.

ores

aa not^ onyened,,^ Lia^ (oxeed

aaa^ not^

(eTHed,i CenieiNed +z s meEd aonotp v( p+z? a as leever v(all not enke

ytrton vatlues LLP-hl LL--4L

{m-

L D-m(nM)

donot ane igen ilue tqual ,m

L C4)-^ m(m-)D

L

arnpl

ASysBemm Under Yolation

EiKPE (^) TW= L

KEol H

I I^ doial^ top.

E t+) vh)

TTy L^ +J2^ l^ óymrebae^

t)

T

Lz

QT EH

Fe Spin hotatios

Ro) e Re)-e^ Re)-e

n n^ i8^ bdd

e TBS+^ ir^ Sine

) race^ o^ - tsace T= a

Hudbogen dem^ (Vedh^ aleuo^ Madel-Lardae)

151h s(b5) cbiw angulon mernnlun M PHadt

m 0 -H5, o^ , 135

apun arylas memenlum D,4-s

s (8n) GR&

lucbtoqen gBom

e

TTa

(n+8)!o vakd

&6 HD) a,ti,o

( Apelicain aTdenti the lae hyduogn adorn R 9t (^) oSung dg e

em^ =2n=3,^ m

nm 13,a -iy

330vundenk doogen ike ddem

Hatem K=| (^) TO He^ e He aem

P$itonum stem Muonae am Hyduan dom

E - 6.8 ev E- 186xEp E^ 3Gev T Ta3 e 86 To^ 0.53n

Tdent ehalhe^ y^ an^ in^ lal^ i^ ol^ LËL,A)

is am^ Sgen tata^ q^ H

the Cpn^ sate^ ¢T

m (^) i ma 2:^ Th