Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Cv assignment for understanding., Summaries of Computer Fundamentals

Cv assignment for understanding and.

Typology: Summaries

2023/2024

Uploaded on 03/11/2025

harshit-gupta-25
harshit-gupta-25 🇮🇳

2 documents

1 / 12

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
42
<br>
onmeted chan wde airemb,
<br>
fr direetion chancooe,
<br>
4
<br>
D
<br> Avlqnment
<br>
ComputerViion
<br>
Kanit ishrov
<br>
Rol|- 224EEIDD7.
<br>
30303330322||222 33 21 ||| O|L0
<br>
2dine ehan ode qrenbn,
<br>
3
<br>
Appli eti Dn chancodes;
<br>
Abssute chan code:
<br>
ctwstng pofnt =(v4).
<br>
foy 4Conneted chan bde:
<br>
ed in ahage repanntatin ond bmdoy onalyris n
<br>
Tmage proUDng.
<br>
†7G676443 45 63 222 0O b2 2
<br>
)énate effieient object reugnition by emoting boumdain.
<br>
j4elpe fn comprsigrn st5bject bsumdaiyinfy motion frtommii.
<br>
iential for ybtution amol scalevaent anae madehing.
<br>
oirectby rernentthe seinu diredin.
<br>
bependo nthe hgigt poit travemal.
<br>
stoting
<br>
Relatiye ehon de.
<br>
Repres srts the diffewnu bhw ewnsecutie diredi.
<br>
9vantent to tthe stating print.roviong posifion învariene.
<br>
ey: abshete o,I,2, 1.
<br>
Relatire :
<br>
(1-0), (2-), (-2) ,,
<br>
tl,-I.
<br>
pf3
pf4
pf5
pf8
pf9
pfa

Partial preview of the text

Download Cv assignment for understanding. and more Summaries Computer Fundamentals in PDF only on Docsity!


onmeted chan^ wde airemb,
fr direetion (^) chan cooe,
4

D


Avlqnment
Computer Viion
Kanit ishrov
Rol|- (^) 224EEIDD7.
30303330322||222 33 21 |^ ||^ O |L
(^2) dine ehan ode^ qrenbn,
3
Appli eti Dn (^) chancodes;
Abssute (^) chan code:
ctwstng pofnt =(v4).
foy (^4) Conneted (^) chan bde:
ed (^) in ahage (^) repanntatin ond^ bmdoy^ onalyris^ n
Tmage (^) proUDng.
†7G676443 45 63

22 0O^ b2^2
) (^) énate effieient object^ reugnition by^ emoting (^) boumdain.
j 4elpe (^) fn comprsigrn st5bject (^) bsumdaiyinfy motion fr tom^ mii.
i ential for ybtution amol (^) scalevaent anae (^) madehing.
oirectby (^) rernentthe seinu diredin.
bependo n the (^) hgigt poit travemal.
stoting
Relatiye (^) ehon de.
Repres (^) srts the (^) diffewnu bhw^ ewnsecutie^ diredi.
9vantent to (^) tthe (^) stating print.roviong posifion^ învariene.
ey: (^) abshete o,I,2, 1.
Relatire


(1-0), (^) (2-), (-2) ,,
tl,-I.

of (^) fmage (^) ivstaded qs^ (aurîng clvuenie): (omliin that
(i4) (^) sttfng point)
(^4) comeeted chanode:

omezted chaun^ tvole
4
3


Ap (^) proaeh ril bes
2232222 3 2|16O||^ (^2 2 1) 00DD 3330 O
554 (^4 ) 422 b|^22341 D0 D 6G7 o
wehare Soun^ day
are (^) to trayene th emire^ bd (^) a, the (^) chaintooe,
omd (^) Cdeity au^ poble
stntfing points,^ fon^ eadh^ staning^ poird,^ e (^) have tb sbtaih (^) the ehancode,
and hawe to^ ne (^) the (^) icographi cally maleat chan coole^ to^ represnt^ hu
buundang
. Ssutibnfer (^) rtatibninvaemt chon code

  • Caloulatethe (^) ist diffeumu.
    . Normalize he (^) chain nde by,
    atanting (^) vith the^ mallst (^) lexiograhic
    so the (^) chân code^ sequene^ yelicaliy to (^) achey
    thu wor aliztion.
    Poumay flovng^ alquithm.!
    I Set-lhe directin
    day fsltowing^ algorithm^ oletects (^) omd trowehe s^ thu bowmdauy
    sfLnay sbjet^ tn am^ îmage
    D (^) stast at the bowmday pível
    sequnu
    Begin (^) at ablack pixel^ (valuu) that part^ st^ sbjeet^ btundon
    Tapikally, (^) the algo (^) tants (^) at-h to uft mpst (^) þoumdany pixel.
    .9natl direckibn (^) à woually tora» (^) doright (eost).
    Move (^) clockwice aiind -the ohjeet (^) tb dletect (^) thu nent (^) boundny
    pixel.
    i) betectthe^ bounday moyement
  • (^) checks -the g (^) comected neizh bbun (^) st cumemt^ pxel
    Aigm direetion^ codes as^ slot:
    i)epeat wnill^ lenp closed.
    move the (^) houn
    beleus!Xelin
    clbek

y shite

Corvex (^) langle 180)
tlaet oncare^ (omngles^ (90).
3
4
S.
d) (^) 9demtty the, opposite oner pomts^ &the cbnaNe
utev (^) bbundaiy. (^) (teu identified/manke o^ "x").
ey. ioin the^ shte^ olat (^) omd"x' maks (^) and eneloeit
Penimeten peduud.
Ped (^) boumday pggoa
àthe MPp neltt imaye.
step (^) by (^) otefor s
4
a) (^) Define înnes amd owte
köundauy of^ -the^ given^ ahape
by rnposênga^ a grtd^ on.
L) (^) 9denity the convex^ ond Uniave
Ventites (^) t tu înner awa^ ahaded)
2nd
Hoirntadignature
Ro:
. Gnnt the^ numben^ st black pirelo^ (1)
în each r


nawe (^) peins (black) ot
2:


main: (43)^ (24)
(^4 )
5! 3
päimany diagonal^ ngnature teft to (^) bstom rig).
Cumt (^15) hng diagonah^ heu^ no (^) îndix


Vman diaqonal:^ (,1)^ (^2) 2)(343) (^) 4,4) (s5).
nt (^) St1 3.
Ist (^) diagonal aboe the main:^ (1a)^ (43) (3,4) (45)
-[4,4, (^) ,3,3).
yeiea! migmature^ :^ [44, 0,D,^ 3,4J.
thu
(3,5) -y^ luntst^ 1s o.
Is+ (^) diagon al belothe man: (241)^ (3,2)
! (^) (31) (4,^ 2)
-primaydiayonal ngmatue: (^) [s,l0, 31],
Snmn?ndex
(4,3) (^) (s4). countst^ (^1) 3.
(G) + lontSHi!.

keuordny diagonal^ (ts^ riglt to (^) hstton (^) luf)
. man (^) aeondauy (^) diavonab: (, b)^ (45) (^) 34) 4, 3)^ s)

Ist (^) oursonal above (^) main : (5) (4) (3,3) (4,2) loum^ St^4 !.
(, 4)^ (2,3)^ l3,2)^ cont^ 1= 4.

2nd
Iddiagonl belos
. 2nd
dtence onneted^ compment (^) lheling:
2 iach 1 à (^) gfven a^ miqve (^) bel stontng (^) nth tf vnvited.
U 2 1 D
(4.(3,5)^ (4,4)^ (t,1) loumtS i


(3;6) (4,^ 5) (s,4)^ ownt^ (^1) =2.
Clasical (^) cmeted conponent ebelling
022
U0 2
seondany diagon^ al igmature -[4,4,2,2].
Awignmont
uvel.
443
3-.
D
2 2
2
2 2
2 2
2


o
0 4 4 4 O


5
5 5- 5 0
2 2 4 05 3 |

| (^40)
46
Istdattereme 3030 |o^ 3 (^03) o13030301 (^) 1O
140
155
125
11b
Ltsp fr (22) (pîrvale i13),
fr (32)(25).
156
125 3%
Bínany threrbld fmetion
155 201
j
fr (23)(vas^ t).
201
84
fr(2,4) (Piy (^) valu =^ 4s).
3%
2D|
201
|
45
110
38
46
|
2bD 86
b301 D303D3^ |613D303DI
2 DD
45
46
39
45
|
46
wng 4 lonm^ ected chain
Çhan ubde
32
Coo |,2^2


brden= um ben^ &f^ element fmthu1st^ dif.
equivalently (^) în (^) chon Code


Local (^) sfay Pastte^ (LBP):
Ne: Cenderpixel^ valne.
Np: Neghbows^ gixel (^) values.
Binany patter
||00 ||.
-thrasld
De

m

ad=0.
fmcin
Kinay patten
Deimal = (^) g7+2454at+ 2t


D o


+,2+0+
22%
peimad (^) n4b^42421


  • (^) 243.


25
fow4) (4s).
38
45
44
38
|2.D
L
|20 32 68.
45
46
tor roted LBP,


Tina! LBP^ matix,.:
(^228 )
24b
24† 250
Deimal y 44242

. (^) rbtated


LBP matix.

24f
=32+442+1.
34
-the (^) amalest (^) binay partter^ fr pvel (42)
250,

  • Raprnust (^) tho tertere rnformatin

, boned
o pxel (^) mtenitg velationsli.
fr (32)
000D

ODB D


63 15
(^127 )
3241G43+4-t2+|
G
fr (4).
(8)

4

  • tmug eneihy:
    4

Cotast btfxo.t)+4x)^ 6xo)

  • (^) (xb.0sa)+D +(t* o.a5) +40)
  • (^) 4xo) +(xo.024)^4 b+^ (xb.b34)^ -4 (^) (9* o)+^ (4xo.b34)^
  • o (^) +o
    0.54|.
    4
    imilanyfor oth^ ondirectioym
    N N
    2-


+|i-j| (^) fr each^ pinel^ (i^ i)
PGS))
1+|t-31.


  • I ZrlC). log, (PGi)
    sindalyf ottor drethion^ amgle.
    22

I

2 3
3
2
3 4
D
2


2



  • D-195loa(o.25)+^ o.^ ag,o.or4)t o.148log,(o.142)+
  • 0.^ D3ao3,(b.b4)+ o.099 (^) lg-(o.b32).


226s


-the



3
foy 135°


6

for 4s


(^2 )

ortrast tomoqenetty^ amd^ entepy^

m each case


4 1.^

o.

.


Pa.

Pustion openatr^ deteniineo nshich^ piret^ paua


to onotruct^

aa co- oeewame


(2,4)-(1s).


2 3

Coeocuame matrix


pbu) =


? (0,)=O


We

hoe to^

emwre that th cor bcene


qonal pixel^ nelatienahip.or a^ diaqona

co (^) DeCmame

mata*,


-the bpenator^ mwt identifg pnel^ pais^ -that^ are


diaqonal meigh^ bowy^

.

Pl)

=


P Cu)* l


2,3 )(2,2) ond on


2


ke Quootiy

number 19,


rehareb seleet^

xg 3X3 matix


fronthe big^ mati,^ amd^

rawewe

evey pihel enet bound any


paels. amd, hare^ to^ caleuote


the qLeM^ for^ erey^ ngle,


(Ca:

o,qo,^ 1a5.. amd^ fd


P=

are analy ed

în the^ îmaze


valid pixel^

pauns:

o:


diagonal pon.tion^

bpesartor


(24) (s).


matx reronents^ dia


(391) (2,2).

Prb) Pt1)


a 4) omdm

n


Plb.) tronsiti^

on fromb


Pl) -


Diagonad
matices