Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Density, Cumulative Distribution and Reliability Functions - Exam | STAT 3401, Exams of Probability and Statistics

Material Type: Exam; Class: Introduction to Probability Theory I; Subject: Statistics; University: California State University-East Bay; Term: Unknown 1989;

Typology: Exams

2009/2010

Uploaded on 02/24/2010

koofers-user-lyw
koofers-user-lyw 🇺🇸

2

(1)

10 documents

1 / 11

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Reliability Graphs in R
3.1. Suppose that an object obeys an EFL with rate λ = 2 per month.
(a) Sketch the density function, the cumulative distribution function, the reliability function and
the hazard function of its length of life T.
lam <- 2
t <- seq(.01, 3, by=.01)
dens <- dexp(t, rate=lam)
cdf <- pexp(t, rate=lam)
reli <- 1 - cdf
hazd <- dens/reli
par(mfrow=c(2, 2))
plot(t, dens, type="l")
plot(t, cdf, type="l")
plot(t, reli, type="l")
plot(t, hazd, ylim=c(0, 4), type="l")
par(mfrow=c(1, 1))
pf3
pf4
pf5
pf8
pf9
pfa

Partial preview of the text

Download Density, Cumulative Distribution and Reliability Functions - Exam | STAT 3401 and more Exams Probability and Statistics in PDF only on Docsity!

Reliability Graphs in R

3.1. Suppose that an object obeys an EFL with rate

λ^ = 2 per month.

(a) Sketch the density function, the cumulative distribution function, the reliability function andthe hazard function of its length of life

T.

lam <- 2t <- seq(.01,

3,^ by=.01) dens <- dexp(t,

rate=lam) cdf^ <- pexp(t,

rate=lam) reli <- 1

-^ cdf hazd <- dens/relipar(mfrow=c(2,

plot(t,^

dens,^ type="l") plot(t,^

cdf,^ type="l") plot(t,^

reli,^ type="l") plot(t,^

hazd,^ ylim=c(0,

4),^ type="l")

par(mfrow=c(1,

EFL with^

λλλλ^ = 2

A Component With Quadratic Hazard Rate

5.1. A communications satellite can be regarded as a parallel array of two independent EFLcomponents with mean lifetime 3 years.(a) Plot (on the same axes) both the reliability function for this system and the reliability functionfor one component. F^ ( t ) = P( SS

≤^ t ) = P( T^1

≤^ t ,^ T ≤^ t ) = P( 2

T ≤^ t ) P( T^1

≤^ t ) = [ F ( 2

(^2) t )]= [1 – exp(–

(^2) λ t )]

= 1 – 2 exp(–

λ t ) + exp(–

λ t ) R^ ( t ) = 2 exp(– S

λ t ) – exp(–

λ t ) f^ ( t ) = 2λ^ exp(– S

λt) – 2λ^ exp(–

λt) lam <- 1/3t <- seq(.01,

10,^ by=.01) reli.1 <-

1 -^ pexp(t,

rate=lam)

hazd.1 <-

dexp(t,

rate=lam)/reli. reli.2 <-

2exp(-lamt)

-^ exp(-2lamt)

hazd.2 <-

2lam(exp(-lam*t)

-^ exp(-2lamt))/reli.

par(mfrow=c(1,

plot(t,^

reli.1,

ylim=c(0,1),

type="l",

ylab="Reli (Syst = red)")

lines(t,

reli.2,

ylim=c(0,1),

col="red")

plot(t,^

hazd.1,

ylim=c(0,.4),

type="l",

ylab="Hazd (Syst = red)")

lines(t,

hazd.2,

ylim=c(0,.4),

col="red")

par(mfrow=c(1,

6.1. Three components obey WFLs with

λ^ = 1. Their values of

α^ are 0.5, 1, and 2, respectively.

(c) Sketch the three density curves on the same axes. ...Note that R (along with most other statistical packages) uses the true scale parameter

–1/α β = λ.

When^ λ^ = 1,

β^ = 1 also, so the distinction between Poisson rate

λ^ and Weibull scale

β^ is moot here.

But the program below is written to use Weibull shape and scale parameters. t <- seq(.01,

3,^ by=.01) alp <- 0.5;

lam^ <-^

1;^ bet^

=^ lam^(-1/alp)

plot(t, dweibull(t,

alp,^ scale=bet),

type="l",

ylab="Density",

ylim=c(0,2), main = "Weibull Densities with Shapes .5 (black), 1 (red), 2 (blue), 4 (green)")alp <- 1;

lam^ <-

1;^ bet^

=^ lam^(-1/alp)

lines(t, dweibull(t, alp,

scale=bet)

,^ col="red")

alp <- 2;

lam^ <-

1;^ bet^

=^ lam^(-1/alp)

lines(t, dweibull(t, alp,

scale=bet)

,^ col="blue")

alp <- 4;

lam^ <-

1;^ bet^

=^ lam^(-1/alp)

lines(t, dweibull(t, alp,

scale=bet)

,^ col="darkgreen")

Goodness

of^ Fit^

Test

Distribution

AD^

P

Normal^

0.^

Exponential

<0. Weibull^

0.251^ >0. Gamma^

0.^

ML^ Estimates

of^ Distribution

Parameters

Distribution

Location

Shape

Scale

Threshold

Normal*^

4.^

Exponential

Weibull^

2.^

Gamma^

3.^

*^ Scale:

Adjusted

ML^ estimate

C 1 P er cent

(^105) (^0) - 99.9^999050101 0.

C 1 P er cent

100.00010.0001. 0.1000. 99.9^9050101 0.10. C 1 P er cent

10.01. 99.9^9050101 0.10.

C 1 P er cent

10.01. 99.9^999050101 0.10.

G oodness of F it TestN ormalA D = 0.457P -V alue = 0.260E xponentialA D = 9.962P -V alue < 0.003WeibullA D = 0.251P -V alue > 0.250G ammaA D = 0.732P -V alue = 0.

Probability Plot for C N ormal - 95% C I

E xponential - 95% C I

Weibull - 95% C I

G amma - 95% C I