

Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
The derivatives of various functions including trigonometric, exponential, and logarithmic functions. The focus is on the derivative of the natural logarithmic function, y = ln x. How to find the derivative using implicit differentiation and provides examples for different functions. It also includes the chain rule for finding the derivative of y = 3 ln2 5x.
Typology: Lecture notes
1 / 2
This page cannot be seen from the preview
Don't miss anything!
d e r i v a t i v e s o f t r i g o n o m e t r i c , e x p o n e n t i a l & l o g a r i t h m i c f u n c t i o n s
MCV4U: Calculus & Vectors
J. Garvin
Slide 1/
d e r i v a t i v e s o f t r i g o n o m e t r i c , e x p o n e n t i a l & l o g a r i t h m i c f u n c t i o n s
Recap Determine the derivative of f (x) =^4 x
3 e^5 x^.
f ′(x) = e
5 x (^) · 12 x (^2) − 4 x (^3) · 5 e 5 x [e^5 x^ ]^2 = e^5 x^ (12x^2 − 20 x^3 ) [e^5 x^ ]^2 =^12 x
(^2) − 20 x 3 e^5 x = − 4 x
(^2) (5x − 3) e^5 x J. Garvin — Derivative of the Natural Logarithmic Function, Slide 2/9 y = ln x
d e r i v a t i v e s o f t r i g o n o m e t r i c , e x p o n e n t i a l & l o g a r i t h m i c f u n c t i o n s
Many phenomena are modelled using logarithmic functions. A general logarithmic function, y = logb x, is related to an exponential function. If y = logb x then by^ = x A logarithmic function with a base of e, y = loge x, is often abbreviated y = ln x and is called the “natural logarithm”. Note that ln ex^ = loge ex^ = x, and eln^ x^ = eloge^ x^ = x.
J. Garvin — Derivative of the Natural Logarithmic Function, Slide 3/9 y = ln x
d e r i v a t i v e s o f t r i g o n o m e t r i c , e x p o n e n t i a l & l o g a r i t h m i c f u n c t i o n s
To find the derivative of y = ln x, rewrite using base e on both sides of the equation and implicitly differentiate. y = ln x ey^ = eln^ x ey^ = x d dx e y (^) = d dx x ey dydx = 1 dy dx =^
ey = (^1) x Derivative of y = ln x If f (x) = ln x, then f ′(x) = (^1) x. If y = ln x, then dydx = (^1) x. J. Garvin — Derivative of the Natural Logarithmic Function, Slide 4/9 y = ln x
d e r i v a t i v e s o f t r i g o n o m e t r i c , e x p o n e n t i a l & l o g a r i t h m i c f u n c t i o n s
Example Determine the derivative of f (x) = 8 ln x + 5.
f ′(x) = 8 (^1) x = (^8) x
Example Determine the derivative of f (x) = x^2 ln x.
f ′(x) = 2x ln x + x2 1 x = x(2 ln x + 1) J. Garvin — Derivative of the Natural Logarithmic Function, Slide 5/9 y = ln x
d e r i v a t i v e s o f t r i g o n o m e t r i c , e x p o n e n t i a l & l o g a r i t h m i c f u n c t i o n s
Example Determine the derivative of y = 3 ln^2 5 x. This one uses the chain rule twice, where v = 5x, u = ln v and y = 3u^2. dy dx =^ dy du ·^ du dv ·^ dv dx = 6u · (^) v^1 · 5 = 30 ln v · (^1) v = 30 ln 5 5 xx = 6 ln 5x x
J. Garvin — Derivative of the Natural Logarithmic Function, Slide 6/9 y = ln x
d e r i v a t i v e s o f t r i g o n o m e t r i c , e x p o n e n t i a l & l o g a r i t h m i c f u n c t i o n s
Example Determine the equation of the tangent to y = x^2 ln 3x when x = 2e.
dy dx = 2x^ ln 3x^ +^ x 2 3 3 x = 2x ln 3x + x
When x = 2e, y = 4e^2 ln 6e and dydx
∣x=2e = 4e ln 6e + 2e.
J. Garvin — Derivative of the Natural Logarithmic Function, Slide 7/9 y = ln x
d e r i v a t i v e s o f t r i g o n o m e t r i c , e x p o n e n t i a l & l o g a r i t h m i c f u n c t i o n s
Substitute x = 2e, y = 4e^2 ln 6e and m = 4e ln 6e + 2e into y = mx + b. 4 e^2 ln 6e = (4e ln 6e + 2e) · 2 e + b = 8e^2 ln 6e + 4e^2 + b b = − 4 e^2 ln 6e − 4 e^2 = − 4 e^2 (ln 6e + 1) = − 4 e^2 (ln 6 + 2) Therefore, the equation of the tangent is y = (4e ln 6e + 2e) x − 4 e^2 (ln 6 + 2).
J. Garvin — Derivative of the Natural Logarithmic Function, Slide 8/9 y = ln x
d e r i v a t i v e s o f t r i g o n o m e t r i c , e x p o n e n t i a l & l o g a r i t h m i c f u n c t i o n s
J. Garvin — Derivative of the Natural Logarithmic Function, Slide 9/9 y = ln x