Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Diamond tool and metallurgy, Study notes of Metallurgy

Diamond tool test and compositions

Typology: Study notes

2018/2019

Uploaded on 08/06/2019

madar-uchiha
madar-uchiha 🇮🇳

4.5

(2)

1 document

1 / 9

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
ARCHIVES OF METALLURGY AND MATERIALS
Volume 55 2010 Issue 4
DOI: 10.2478/v10172-010-0009-1
A. ROMAŃSKI
FACTORS AFFECTING DIAMOND RETENTION IN POWDER METALLURGY DIAMOND TOOLS
CZYNNIKI DECYDUJĄCE O WŁASNOŚCIACH RETENCYJNYCH OSNOWY W NARZĘDZIOWYCH SPIEKACH
METALICZNO-DIAMENTOWYCH
This paper describes the effects of principle factors which have an influence on potential diamond retention capabilities in
powder metallurgy diamond tools. Investigations were carried out using a 3-D computer model of diamond particle embedded
in a metallic matrix. The proposed model assumed that the material was fully densified by the hot pressing technique and then
cooled down to room temperature. The energies of plastic and elastic deformation of the matrix around the diamond grit as
well as recoverable strain energy accumulated in the grit on cooling were calculated. The effects of Young’s modulus and yield
strength of the matrix as well as friction between diamond and matrix on these energies were analysed. The obtained results
have shown that a matrix characterised by high yield strength ensures better diamond retention capacity whereas high Young’s
modulus of the matrix and its chemical affinity to carbon, which increases friction at the diamond-matrix interface seem to
have lower importance.
Keywords: PM Diamond Tools, Diamond Retention, Computer Modeling, Mechanical Properties
W pracy przedstawiono analizę wpływu podstawowych czynników mających wpływ na własności retencyjne materiału
osnowy w narzędziowych spiekach metaliczno-diamentowych. Badania wykonano z zastosowaniem modeli 3-D cząstki dia-
mentu osadzonej w osnowie. W zaproponowanym modelu założono, że materiał został zagęszczony do gęstości teoretycznej w
wyniku prasowania na gorąco i następnie ochłodzony do temperatury otoczenia. Dla temperatury otoczenia obliczano całkowitą
energię odkształcenia oraz energię odkształcenia plastycznego materiału osnowy wokół diamentu oraz energię odkształcenia
sprężystego cząstki diamentu. Analizie poddano wpływ modułu Younga i granicy plastyczności osnowy oraz współczynnika
tarcia pomiędzy cząstką diamentu i osnową na te energie.
W wyniku analizy otrzymanych rezultatów badań modelowych stwierdzono, że materiał osnowy odznaczający się większą
granicą plastyczności zapewnia wyższe własności retencyjne osnowy. Natomiast większy moduł Younga oraz zwiększenie
współczynnika tarcia, np. poprzez zastosowanie osnowy odznaczającej się powinowactwem chemicznym do węgla mają z
punktu widzenia retencji diamentu mniejsze znaczenie.
1. Introduction
Powder metallurgy diamond tools are widely used
for machining natural stones and other difficult to cut
materials, such reinforced concrete or asphalt. In order
to maintain the highest productivity of the tool at the
lowest cost, the tool composition has to be properly ad-
justed to the workpiece properties and operating con-
ditions. A well engineered matrix must hold the dia-
monds firmly and wear at a rate fast enough to discard
degraded diamond grits in order to keep the tool sharp
and ensure its long service. The wear resistance of the
metallic matrix can be easily changed by adding soft
or hard components to the powder mixture [1]. More
difficult task is to control the hold on the diamond grits,
which is affected by the matrix mechanical properties,
mismatch between the thermal expansion coefficients of
the matrix and diamond, and phenomena taking place
at the diamond-metal interface. Most often the bond-
ing between diamond crystals and matrix relies on me-
chanical locking. During cooling to room temperature,
due to the mismatch between thermal expansion coeffi-
cients, diamond grits are tightened by the surrounding
matrix wherein complex stress and strain fields occur.
When coated diamond is used additional chemical bond-
ing may occur which increases friction/adhesion at the
diamond-matrix interface [2-5].
Computer aided modelling (CAM) seems to be a
perfect technique to study phenomena affecting diamond
FACULTY OF METALS ENGINEERING AND INDUSTRIAL COMPUTERSCIENCE, AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, 30-059 KRAKOW, 30 MICKIEWICZA STR., POLAND
pf3
pf4
pf5
pf8
pf9

Partial preview of the text

Download Diamond tool and metallurgy and more Study notes Metallurgy in PDF only on Docsity!

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume 55 2010 Issue 4 DOI: 10.2478/v10172-010-0009-

A. ROMAŃSKI∗

FACTORS AFFECTING DIAMOND RETENTION IN POWDER METALLURGY DIAMOND TOOLS

CZYNNIKI DECYDUJĄCE O WŁASNOŚCIACH RETENCYJNYCH OSNOWY W NARZĘDZIOWYCH SPIEKACH

METALICZNO-DIAMENTOWYCH

This paper describes the effects of principle factors which have an influence on potential diamond retention capabilities in powder metallurgy diamond tools. Investigations were carried out using a 3-D computer model of diamond particle embedded in a metallic matrix. The proposed model assumed that the material was fully densified by the hot pressing technique and then cooled down to room temperature. The energies of plastic and elastic deformation of the matrix around the diamond grit as well as recoverable strain energy accumulated in the grit on cooling were calculated. The effects of Young’s modulus and yield strength of the matrix as well as friction between diamond and matrix on these energies were analysed. The obtained results have shown that a matrix characterised by high yield strength ensures better diamond retention capacity whereas high Young’s modulus of the matrix and its chemical affinity to carbon, which increases friction at the diamond-matrix interface seem to have lower importance. Keywords : PM Diamond Tools, Diamond Retention, Computer Modeling, Mechanical Properties

W pracy przedstawiono analizę wpływu podstawowych czynników mających wpływ na własności retencyjne materiału osnowy w narzędziowych spiekach metaliczno-diamentowych. Badania wykonano z zastosowaniem modeli 3-D cząstki dia- mentu osadzonej w osnowie. W zaproponowanym modelu założono, że materiał został zagęszczony do gęstości teoretycznej w wyniku prasowania na gorąco i następnie ochłodzony do temperatury otoczenia. Dla temperatury otoczenia obliczano całkowitą energię odkształcenia oraz energię odkształcenia plastycznego materiału osnowy wokół diamentu oraz energię odkształcenia sprężystego cząstki diamentu. Analizie poddano wpływ modułu Younga i granicy plastyczności osnowy oraz współczynnika tarcia pomiędzy cząstką diamentu i osnową na te energie. W wyniku analizy otrzymanych rezultatów badań modelowych stwierdzono, że materiał osnowy odznaczający się większą granicą plastyczności zapewnia wyższe własności retencyjne osnowy. Natomiast większy moduł Younga oraz zwiększenie współczynnika tarcia, np. poprzez zastosowanie osnowy odznaczającej się powinowactwem chemicznym do węgla mają z punktu widzenia retencji diamentu mniejsze znaczenie.

1. Introduction

Powder metallurgy diamond tools are widely used

for machining natural stones and other difficult to cut

materials, such reinforced concrete or asphalt. In order

to maintain the highest productivity of the tool at the

lowest cost, the tool composition has to be properly ad-

justed to the workpiece properties and operating con-

ditions. A well engineered matrix must hold the dia-

monds firmly and wear at a rate fast enough to discard

degraded diamond grits in order to keep the tool sharp

and ensure its long service. The wear resistance of the

metallic matrix can be easily changed by adding soft

or hard components to the powder mixture [1]. More

difficult task is to control the hold on the diamond grits,

which is affected by the matrix mechanical properties,

mismatch between the thermal expansion coefficients of

the matrix and diamond, and phenomena taking place

at the diamond-metal interface. Most often the bond-

ing between diamond crystals and matrix relies on me-

chanical locking. During cooling to room temperature,

due to the mismatch between thermal expansion coeffi-

cients, diamond grits are tightened by the surrounding

matrix wherein complex stress and strain fields occur.

When coated diamond is used additional chemical bond-

ing may occur which increases friction/adhesion at the

diamond-matrix interface [2-5].

Computer aided modelling (CAM) seems to be a

perfect technique to study phenomena affecting diamond

∗ (^) FACULTY OF METALS ENGINEERING AND INDUSTRIAL COMPUTER SCIENCE, AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, 30-059 KRAKOW, 30 MICKIEWICZA STR., POLAND

retention in the matrix, which has been utilised to evalu-

ate residual stresses and local plastic deformation zones

in diamond impregnated metal matrix composites [6-11].

Basing on the finite element modelling results it has been

suggested that diamond retention depends on the energy

of elastic and plastic deformation of the matrix around

the diamond crystal. None of the above cited studies,

however, did not scrutinized the effects of matrix char-

acteristics, such as Young’s modulus, yield strength, etc,

on its retention properties. Therefore the main objective

of the present research was to investigate the combined

effects of mechanical properties of the matrix and fric-

tion between matrix and diamond on retention of the

embedded grits. To this end the Abaqus software was

used to create a 3-D model.

2. Experimental procedure and results

The simulations were performed on an elastic-plastic

model, where the linear tetrahedral type C3D4 elements

and linear hexahedral type C3D8R elements were used

to generate the mesh in the matrix and diamond, respec-

tively.

The mesh configuration is presented in Fig. 1,

whereas mechanical and thermal properties of the

analysed matrices are summarised in Table 1.

Fig. 1. Mesh used in the numerical analysis

TABLE 1

Input data used for calculations Diamond Matrix Hot pressing temperature, (◦C) 850 Thermal linear expansion coefficient, (m·K−^1 ) 1.05·^10

− 6 (0-1200◦C)

1.6· 10 −^5

(0-1200◦C)

Poisson ratio 0.2 0.

Young’s modulus E, (GPa) 1000

Yield strength R 0. 2 , (MPa) –

Tensile strength, (MPa) – 900 Strain, (%) – 10 Size, (μm) 350 – Height of diamond protrusion, (μm) 10025 – Friction coefficient μ at diamond-matrix interface 0; 0.2; 0.4; 0.6; 0.8; 1. 0 _ – the height of diamond projected out over the matrix level_

Fig. 2. Example of stress and strain distribution calculated for diamond protrusion of 25 μm

Fig. 3. Example of stress and strain distribution calculated for diamond protrusion of 100 μm

Fig. 4. The effect of friction and diamond protrusion on ALLIE

Fig. 5. The effect of friction and diamond protrusion on ALLPD

Fig. 6. The effect of friction and diamond protrusion on RSE

3. Discussion and concluding remarks

As seen in Figs 2 and 3 the local stress is proportion-

al to the yield strength of the matrix, whereas the size

of plastically deformed zone shows the inverse trend.

From Tables 2-4 it is evident that ALLIE markedly

increases with the yield strength and Young’s modulus

while the effect of friction can be neglected. The ef-

fect of yield strength on ALLIE is more pronounced for

lower diamond protrusion and the opposite situation is

seen for Young’s modulus. Interestingly, the effect of the

coefficient of friction increases by a factor of ∼2.5 as the

height of diamond protrusion rises from 25 to 100μm.

Contrary to ALLIE, ALLPD is mainly affected by

Young’s modulus, and its dependence on yield strength

is markedly weaker.

It is noteworthy that RSE strongly depends on the

yield strength of the matrix whereas the other two factors

are of secondary importance.

All in all, the generated data indicate that ALLPD

and RSE are mainly influenced by Young’s modulus and

yield strength, respectively, whereas both these proper-

ties equally affect ALLIE. The variation of friction co-

efficient between 0÷1 has negligible effect on the cal-

culated energies, especially for low diamond protrusion.

It should be noted, however, that coated diamonds are

chemically bonded to the matrix and the friction coef-

ficient may attain values markedly higher than analyzed

in this work. In such a case the role of friction must not

be ignored.

The calculated energies apparently depend on the

height of diamond protrusion (Tables 2-4). It seems rea-

sonable to assume that the working height of diamond

protrusion is above 100μm [13] and, therefore, the results

obtained for this value suggest that the factors which

contribute to improved diamond retention can be ranked

in order of decreasing importance as follows:

1. yield strength of the matrix – which markedly affects

RSE thus enhancing the hold on unloaded diamond

crystals

2. Young’s modulus of the matrix – which markedly

affects ALLPD and may potentially constrain plastic

deformation of the matrix around loaded diamonds

3. friction coefficient at the matrix/diamond interface –

which has a minor effect on the calculated energies

within the range from μ=0 to 1.