




























































































Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
sem 1 maths best maths notes 2k17 updated
Typology: Study Guides, Projects, Research
1 / 165
This page cannot be seen from the preview
Don't miss anything!
n
n
n
m
MODULE I
DIFFERENTIAL CALCULUS-I
In this lesson, the idea of differential coefficient of a function and its successive
derivatives will be discussed. Also, the computation of n
th derivatives of some
standard functions is presented through typical worked examples.
change. When we have a formula for the distance that a moving body covers as a
function of time, DC gives us the formulas for calculating the body‟s velocity and
acceleration at any instant.
Definition of derivative of a function y = f(x):-
Fig.1. Slope of the line PQ is x
f x x f x
The derivative of a function y = f(x) is the function f ( x )whose value at each x is
defined as
dx
dy = f ( x )= Slope of the line PQ (See Fig. 1 )
0
lim x x
f x x f x
0
lim x
(Average rate change)
= Instantaneous rate of change of f at x provided the limit exists.
The instantaneous velocity and acceleration of a body (moving along a line) at any instant
x is the derivative of its position co-ordinate y = f(x) w.r.t x, i.e.,
Velocity = dx
dy = f ( x ) --------- (2)
And the corresponding acceleration is given by
Acceleration ( ) 2
2
f x dx
d y ---------- (3)
Calculation of n
th derivatives of some standard functions
Below, we present a table of n
th order derivatives of some standard functions for
ready reference.
We proceed to illustrate the proof of some of the above results, as only the
above functions are able to produce a sequential change from one derivative to
the other. Hence, in general we cannot obtain readymade formula for nth
derivative of functions other than the above.
1. Consider
mx e. Let
mx y e. Differentiating w.r.t x , we get
y 1
mx me. Again differentiating w.r.t x , we get
mx y (^) 2 m me =
mx m e
2
Similarly, we get
y 3 =
mx m e
3
y 4 =
mx m e
4
And hence we get
Sl.
No
y = f(x) D y dx
d y y
n n
n
n
(^1) emx mn^ emx
mx
n n mx m log a a
ii. 0 if m n
n if m n
iv.
mn x m n
m (^)
if m n
n n
n
a ax b
n 1 ( )
m ax b
n mn
n
a m ax b
m n
6. log( ax b ) n n
n
a ax b
n
1
7. sin( ax b ) ) 2
sin( a ax b n
n
8. cos( ax b ) ) 2
n
9. e sin( bx c ) ax
a
10. eax^ cos( bx c )
n ax , tan ( )
2 2 1 a
yn =
n mx me
mx n
n
e dx
d n mx me.
m ax b
m ax b Differentiating w.r.t x ,
m 1 . Again differentiating w.r.t x , we get
(^2 ) ax b a
m
Similarly, we get
3 3 ax b a
m
And hence we get
m n n ax b a
for all m.
Case (i) If m n (m-positive integer),then the above expression becomes
n n n ax b a
n y (^) n n! a
Case (ii) If m<n,(i.e. if n>m) which means if we further differentiate the above
expression, the
n m 0
mn n yn mm m m n ax b a
1 2 ...... 1 becomes
m n n ax b a m n
m m m m n m n
. i.e
mn n n ax b a m n
m y
m ax b
m m
ax b ax b
Let y
Differentiating w.r.t x
y max b a max b a
m 1 m 1 1 1
11 2 2 (^2) y 2 (^) 1 m m 1 ax b a 1 mm 1 ax b a
m m
3 3 (^3) y 3 (^) 1 mm 1 m 2 ax b a
m
4 4 (^4) y 4 (^) 1 mm 1 m 2 m 3 ax b a
m
……………………………
n mn (^) n yn mm m m n ax b a
1 1 2 ..... 1
This may be rewritten as
mn n
n
n ax b a m
m n m n m mm y
6
2
log 2
log 10
x
x x
e
B log log
log (^) log log
2 6 log( 3 5 ) log( 2 3 ) log( 1 ) 2 log 10
x x x
e
2 log 10
y x x x e
Hence,
n n
n n n
n n n
n
e
n x
n
x
n
x
n y ( 1 ) ( 1 )
2 log 10
1 1 1
2. (a)
2 4 2 4 6
x x e (b)cosh 4 x cosh 4 x
2
(c) e x x
x sinh 3 cosh 2
(d)
5 4
x x x
Sol : (a) Let
2 4 2 4 6
x x y e
2 4 2 4 6 6
x x e e
( ) 1296 ( 6 )
4 2 x 2 x y e e
hence ( ) 1296 ( 6 )
4 2 2 x n
x n (^) n dx
dn e dx
dn y e
n x n n x e e
4 2 2 2 12962 (log 6 ) 6
(b) Let y cosh 4 x cosh 4 x
2
4 4 4 4 2
x x x x e e e e
( ) ( ) 2 ( )( ) 4
(^1 4) x 4 x 4 x 2 4 x 2 4 x 4 x e e e e e e
2 4
x x x x y e e e e
hence, 8 ( 8 ) 0 4
n x n x n n n n yn e e e e
(c) Let y e x x
x sinh 3 cosh 2
2 2
3 x 3 x 2 x 2 x x e e e e e
( )( ) 4
3 x 3 x 2 x 2 x
x
e e e e
e (^)
x x x x
x
e e e e
e (^) 5 5
x x x e e e
4 2 6 1 4
x x x y e e e
4 2 6 1 4
Hence,
n x n x n x y (^) n e e e
4 2 6 0 ( 4 ) ( 2 ) ( 6 ) 4
(d) Let
5 4
x x x
y
Hence,
5 4
x dx
dn
dx x
dn
dx x
dn y n n n n
1 4
n n
n n n
n
x
n
x
n
i.e
n n
n n n
n
n x
n
x
n y ( 5 ) 3 !( 5 4 )
1 4
2 x x
(ii) 2 3 1
x x x
(iii) 2 7 6
2
2
x x
x
(iv) 4 12 9
2
x x x
x (v) a
tan^1 x (vi) tan^1 x (vii)
x
x
tan
1
Sol : (i) Let 6 8
2
x x
y. The function can be rewritten as ( 4 )( 2 )
x x
y
This is proper fraction containing two distinct linear factors in the denominator.
So, it can be split into partial fractions as
x
x
x x
y Where the constant A and B are found
as given below.
x x
Ax Bx
x x
1 A ( x 2 ) B ( x 4 ) -------------(*)
Putting x = 2 in (*), we get the value of B as 2
n n
n n n
n n n
n
n x
n
x
n
x
n y ( 1 ) ( 1 )
1 2 1
( 1 ) 2
1 1 xn
n
x x
n
n
n n
n
(iii) Let 2 7 6
2
2
x x
x y (VTU July-05)
This is an improper function. We make it proper fraction by actual division
and later
spilt that into partial fractions.
i.e 2 7 6
2
2
7 2 2
x x
x x x x
x x
x y Resolving this proper fraction into partial fractions,
we get
x
x
y. Following the above examples for finding A &
B , we get
x x
y
Hence,
n n
n n n
n
n x
n
x
n y ( 1 ) ( 2 )
1 1
i.e
1 1
2
9
n n
n n n x x
y n
(iv) Let ( 1 ) 4 12 9
2
x x
x
x
x y
(i) (ii)
Here (i) is improper & (ii) is proper function. So, by actual division (i)
becomes
x x
x
. Hence, y is given by
2 ( 2 3 )
x x
y [( 2 3 ) 4 12 9
2 2 x x x ]
Resolving the last proper fraction into partial fractions, we get
2 2 ( 2 3 ) ( 2 3 ) ( 2 3 )
x
x
x
x
. Solving we get
A ^1 and 2
2
2
3 2
1
x x x
y
n
n n n
n n n
n
n x n
n
x
n
x
n y ( 2 ) ( 2 3 ) 2
1
(v) a
tan^1 x
Let a
y tan^1 x
(^1222)
x a
a
a a
x
y
2 2
1 1
1 ( ) x a
a y D y D y D
n n n n
Consider ( )( )
2 2 x ai x ai
a
x a
a
( ) ( x ai )
x ai
, on resolving into partial fractions.
x ai
i
x ai
i
, on solving for A & B.
x ai
x ai
x a
a D
n n i n 2 i
1 2 1
1 1 2 2
1
n
n
n
n
x ai
n
x ai i
n
i ( )
1 1
-----------(*)
We take transformation x r cos a r sinwhere
2 2 r x a ,
x
1 a
i x ai r cos i sin re
i x ai r i re
cos sin
n
in
n n in r
e
x ai r e
n
in
n r
e
x ai
now(*) is
in in n
n
n e e ir
n y
1
r
n i n ir
y n
n
n
n
n sin
2 sin 2
1 1
ax
ax
Differentiating using product rule ,we get
ax ax e cos bx cb sin bx cae
ax sin cos . For computation of higher order
derivatives
it is convenient to express the constants „a‟ and „b‟ in terms of the
constants r and
2 2 r a b and a
y 1 can be rewritten as
y e r bx c r bx c
ax 1 ^ cos sin sin^ cos
or y 1 e r {sin bx c cos cos bx c cos }
ax
ax
Comparing expressions (1) and (2), we write y 2 as
2 y 2 (^) re bx c
ax
3 y 3 (^) re bx c
ax
Continuing in this way, we get
4 y 4 (^) re bx c
ax
5 y 5 (^) re bx c
ax
n ax n ^ sin
D e sin bx c r e sin bx c n ,
n ax n ax where
2 2 r a b & a
Solve the following:
2 3 sin cos (ii) x
3 3 sin cos (iii)cos x cos 2 x cos 3 x
(iv) sin x sin 2 x sin 3 x (v) e x
x cos 2
3 (vi) e x x
2 x 2 3 sin cos
The following formulae are useful in solving some of the above problems.
(i) 2
1 cos 2 ( )cos 2
1 cos 2 sin
2 2 x ii x
x x
(iii)sin 3 x 3 sin x 4 sin x ( iv )cos 3 x 4 cos x 3 cos x
3 3
x y x x cos 3 3 cos 4
1 cos 2 sin cos
2 3
2
3 cos 2
3 cos 3 4
0 2 cos 2 2
n
(ii)Let y =
sin 6 3 sin 2
sin 2
sin 2 sin cos
(^33) 3 3 x x x x x x
6 sin 6 2
x
n y x
n n n
(iii) )Let y =cos 3 x cos x cos 2 x
= x x x cos 4 x cos 2 x cos 2 x 2
cos 4 cos 2 cos 2 2
1 cos 4 cos 6 cos 2 2
1 x x x
x x 1 cos 4 4
cos 2 cos 6 4
4 cos 4
2 cos 2
6 cos 6 4
n x
n x n y x
n n
n n
(iv) )Let y =sin 3 x sin xsn 2 x
sin 2 x sin 4 x sin 2 x 2
x x
x sin 2 sin 6 2
1 cos 4
x x
x sin 2 sin 6 4
1 cos 4
6 sin 6 2
2 sin 2 2
4 cos 4 4
x
n x
n y x
n n n n
(v) Let y e x
x cos 2
3
x (^) n cos 2
3
where
2 2 r 3 2 13 &
3
tan
1
1 0
2 2 1
2 x y xy p y --------------- (1) [ 2 y 1 , throughout]
Equation (1) has second order derivative y 2 in it. We differentiate (1), n times,
term wise,
using Leibnitz‟s theorem as follows.
1 0
2 2 1
2 D x y xy p y
n
i.e ( 1 ) 0
2 2 1
2 D x y D xy D p y
n n n ---------- (2)
(a) (b) (c)
Consider the term (a):
2
2 D 1 x y
n . Taking u y 2 and ( 1 )
2 v x and applying Leibnitz‟s theorem
we get
3 3 3
2 2 2
1 1
D uv Duv CD uDv C D Dv CD uDv
n n n n n n n n
i.e
( 1 ) ( ).( 1 ) ( ). ( 1 ) ( ) ( 1 ) ( ) ( 1 )
3 2 2
3 3
2 2 2
2 2
2 2
1 1
2 2
2 2 ^
D y x D y x CD y D x C D y D x CD y D x
n n n n n n n n
2 ( ) 2
(^) n n n yn
nn n y
nn y x ny x
(^) (^) (^) n n n
n D 1 x y 1 x y 2 2 nxy 1 n ( n 1 ) y
2 2
2 ^ ----------- (3)
Consider the term (b):
n
. Taking u y 1 and v x and applying Leibnitz‟s theorem,
we get
2 1
2 1 2
1 1 ^1 1
D y x D y x CD y Dx C D y D x
n n n n n n
(^) n n yn
nn y x ny
n D xy 1 xy 1 ny ---------- (4)
Consider the term (c):
n
n n D p y p D y p y
2 2 2 ( ) ( ) --------- (5)
Substituting these values (3), (4) and (5) in Eq (2) we get
1 2 ( 1 ) 0
2 2 1 1
2 x yn nxyn nn yn xyn nyn p yn
ie 1 ( 2 1 ) 0
2 2 2 1
2 x yn n xyn n yn nyn nyn p yn
1 ( 2 1 ) 0
2 2 2 1
2 x yn n xyn p n yn as desired.
2. Ifsin 2 log( 1 )
1
y x or y sin 2 log( x 1 ) or
2 y sin log( x 1 ) or
sin log( 2 1 )
2 y x x , show that 1 2 1 1 4 0
2 2 1
2 x yn n x yn n yn
(VTU Jan-03)
Sol: Out of the above four versions, we consider the function as
sin ( ) 2 log( 1 )
1
y x
Differentiating w.r.t x, we get
1 (^2) x
y y
ie
2 ( x 1 ) y 1 2 1 y
Squaring on both sides
2 2 1
2 x y y
Again differentiating w.r.t x,
2 1 2 1
2 x yy y x yy
2 x y x y y y
2 x y x y y -----------*
Differentiating * w.r.t x, n-times, using Leibnitz‟s theorem,
1 2 1
2 2
2 1 2
D y D g x nD y D y
nn D y x nD y x
n n n n n n
On simplification, we get
2 2 1
2 x yn n x yn n yn
3. If x tan(log y ), then find the value of
2 1 x yn 2 nx 1 yn n ( n 1 ) yn (VTU July-04)
Sol: Consider x tan(log y )
i.e. tan x log y
1
or
x y e
tan^1
Differentiating w.r.t x,
2 2
tan 1 1 1
1
x
y
x
y e
x
2 1
2 x y y ie x y y -----------*
We differentiate * n-times using Leibnitz‟s theorem,
We get
2 D x y D y
n n
ie.
2 2 1
2 2
2 1
1 1
2 1 ^
D y x CD y D x CD y D x D y
n n n n n n
ie ( 2 ) 0 .... 0 2!
2 1
n ^ n yn yn
nn y x ny x
2 x yn nx yn nn yn
4. If y m^ y m 2 x
1 1
m y x x 1
2
m y x x 1
2
2 2 2 1
2 x yn n xyn n m yn (VTU Feb-02)
Sol: Consider x
y
y y x y m
m m m 2
1 1 1
1 2 1 ym^ xym Which is quadratic equation in y m
1