Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

ecc math 1 notes 2k18 internal notes, Study Guides, Projects, Research of Mathematics

sem 1 maths best maths notes 2k17 updated

Typology: Study Guides, Projects, Research

2016/2017

Uploaded on 11/10/2017

shantanu-kumar
shantanu-kumar 🇮🇳

1 document

1 / 165

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
ENGINEERING MATHEMATICS-I 15MAT11
DEPT OF MATHS, SJBIT Page 1
SYLLABUS
Engineering Mathematics-I
Subject Code: 15MAT11 IA Marks: 20
Hours/Week: 04 Exam. Hours: 03
Total Hours: 50 Exam. Marks: 80
Course Objectives
To enable students to apply knowledge of Mathematics in various
engineering fields by making hem to learn the following:
• nth derivatives of product of two functions and polar curves.
• Partial derivatives.
• Vectors calculus.
• Reduction formulae of integration to solve First order
differential equations
• Solution of system of equations and quadratic forms.
Module 1
Differential Calculus -1:
Determination of nth order derivatives of Standard functions -
Problems. Leibnitz‟s theorem (without proof) - problems.
Polar Curves - angle between the radius vector and tangent, angle
between two curves, Pedal equation for polar curves. Derivative of
arc length - Cartesian, Parametric and Polar forms (without proof)
- problems. Curvature and Radius of Curvature Cartesian,
Parametric, Polar and Pedal forms(without proof) and problems.
10hrs
Module 2
Differential Calculus -2
Taylor‟s and Maclaurin‟s theorems for function of o ne
variable(statement only)- problems. Evaluation of Indeterminate
forms.
Partial derivatives Definition and simple problems, Euler‟s
theorem(without proof) problems, total derivatives, partial
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64

Partial preview of the text

Download ecc math 1 notes 2k18 internal notes and more Study Guides, Projects, Research Mathematics in PDF only on Docsity!

SYLLABUS

Engineering Mathematics-I

Subject Code: 15MAT11 IA Marks: 20

Hours/Week: 04 Exam. Hours: 03

Total Hours: 50 Exam. Marks: 80

Course Objectives

To enable students to apply knowledge of Mathematics in various

engineering fields by making hem to learn the following:

  • nth derivatives of product of two functions and polar curves.
  • Partial derivatives.
  • Vectors calculus.
  • Reduction formulae of integration to solve First order

differential equations

  • Solution of system of equations and quadratic forms.

Module – 1

Differential Calculus -1:

Determination of nth order derivatives of Standard functions -

Problems. Leibnitz‟s theorem (without proof) - problems.

Polar Curves - angle between the radius vector and tangent, angle

between two curves, Pedal equation for polar curves. Derivative of

arc length - Cartesian, Parametric and Polar forms (without proof)

  • problems. Curvature and Radius of Curvature – Cartesian,

Parametric, Polar and Pedal forms(without proof) and problems.

10hrs

Module – 2

Differential Calculus -

Taylor‟s and Maclaurin‟s theorems for function of o ne

variable(statement only)- problems. Evaluation of Indeterminate

forms.

Partial derivatives – Definition and simple problems, Euler‟s

theorem(without proof) – problems, total derivatives, partial

differentiation of composite functions-problems, Jacobians-

definition and problems. 10hrs

Module – 3

Vector Calculus:

Derivative of vector valued functions, Velocity, Acceleration and

related problems, Scalar and Vector point functions.Definition

Gradient, Divergence, Curl- problems. Solenoidal and Irrotational

vector fields. Vector identities - div ( F A), curl ( F A),curl (grad F

), div (curl A). 10hrs

Module- 4

Integral Calculus:

Reduction formulae ∫ sin

n

x dx ∫cos

n

x dx ∫sin

n

xcos

m

xd x ,, (m and n

are positive integers), evaluation of these integrals with standard

limits (0 to л/2) and problems.

Differential Equations :

Solution of first order and first degree differential equations –

Exact, reducible to exact and Bernoulli‟s differential equations.

Applications - orthogonal trajectories in Cartesian and polar forms.

Simple problems on Newton‟s law of cooling.. 10hrs

Module – 5

Linear Algebra Rank of a matrix by elementary transformations,

solution of system of linear equations - Gauss- elimination method,

Gauss- Jordan method and Gauss-Seidel method. Rayleigh‟s

power method to find the largest Eigen value and the

corresponding Eigen vector. Linear transformation, diagonalisation

of a square matrix, Quadratic forms, reduction to Canonical form

10hrs

MODULE I

DIFFERENTIAL CALCULUS-I

CONTENTS:

 Successive differentiation ………………………………………….. 3

 nth derivatives of some standard functions…………………...

 Leibnitz‟s theorem (without proof)………………………..…

 Polar curves

 Angle between Polar curves…………………………………….

 Pedal equation for Polar curves………………………………...

 Derivative of arc length………………………………………….

 Radius of Curvature……………………………………………….

 Expression for radius of curvature in case of Cartesian Curve …

 Expression for radius of curvature in case of Parametric

Curve………………………………………………………………..

 Expression for radius of curvature in case of Polar Curve……...

 Expression for radius of curvature in case of Pedal Curve……...

SUCCESSIVE DIFFERENTIATION

In this lesson, the idea of differential coefficient of a function and its successive

derivatives will be discussed. Also, the computation of n

th derivatives of some

standard functions is presented through typical worked examples.

1. Introduction:- Differential calculus (DC) deals with problem of calculating rates of

change. When we have a formula for the distance that a moving body covers as a

function of time, DC gives us the formulas for calculating the body‟s velocity and

acceleration at any instant.

Definition of derivative of a function y = f(x):-

Fig.1. Slope of the line PQ is x

f x x f x

The derivative of a function y = f(x) is the function f ( x )whose value at each x is

defined as

dx

dy = f ( x )= Slope of the line PQ (See Fig. 1 )

0

lim  xx

f x x f x

0

lim  x

(Average rate change)

= Instantaneous rate of change of f at x provided the limit exists.

The instantaneous velocity and acceleration of a body (moving along a line) at any instant

x is the derivative of its position co-ordinate y = f(x) w.r.t x, i.e.,

Velocity = dx

dy = f ( x ) --------- (2)

And the corresponding acceleration is given by

Acceleration ( ) 2

2

f x dx

d y    ---------- (3)

Calculation of n

th derivatives of some standard functions

 Below, we present a table of n

th order derivatives of some standard functions for

ready reference.

 We proceed to illustrate the proof of some of the above results, as only the

above functions are able to produce a sequential change from one derivative to

the other. Hence, in general we cannot obtain readymade formula for nth

derivative of functions other than the above.

1. Consider

mx e. Let

mx ye. Differentiating w.r.t x , we get

y 1 

mx me. Again differentiating w.r.t x , we get

 

mx y (^) 2  m me =

mx m e

2

Similarly, we get

y 3 =

mx m e

3

y 4 =

mx m e

4

And hence we get

Sl.

No

y = f(x) D y dx

d y y

n n

n

n  

(^1) emx mn^ emx

mx

a  

n n mx m log a a

3  ax  b  m i. m  m  1  m  2 ....  m  n  1  a n^  ax  b  m  n for all m.

ii. 0 if mn

iii.  n !a

n if mn

iv.

mn x m n

m (^) 

if mn

 ax  b 

n n

n

a ax b

n 1 ( )

 

m axb

n mn

n

a m ax b

m n   

6. log( axb ) n n

n

a ax b

n

1

7. sin( axb ) ) 2

sin(  a ax b n

n  

8. cos( axb ) ) 2

a cos( ax b n^ 

n  

9. e sin( bx c ) ax

 r n^ eax sin( bx  c  n ),^22 tan 1 ( )

a

r  a  b    b

10. eax^ cos( bxc )

r e cos( bx c n )

n ax   , tan ( )

2 2 1 a

r  a  b    b

yn =

n mx me    

mx n

n

e dx

d n mx me.

m axb

let y  

m axb Differentiating w.r.t x ,

y 1 = m  ax b  a

m  1 . Again differentiating w.r.t x , we get

y 2 = m  m  1   

(^2 ) ax b a

m  

Similarly, we get

y 3 = m  m  1   m  2  

3 3 ax b a

m  

And hence we get

yn = m  m  1   m  2 ………. m  n  1   

m n n ax b a

  for all m.

Case (i) If mn (m-positive integer),then the above expression becomes

yn = n  n  1  n  2 ……….3.2.1 

n n n ax b a

 

i.e.  

n y (^) nn! a

Case (ii) If m<n,(i.e. if n>m) which means if we further differentiate the above

expression, the

right hand site yields zero. Thus D  ax b   if  m n 

n m   0 

Case (iii) If m>n, then      

mn n yn mm m m n ax b a

   1  2 ......   1  becomes

m n n ax b a m n

m m m m n m n   

. i.e

mn n n ax b a m n

m y

  

m axb

m m

ax b ax b

Let y

   

Differentiating w.r.t x

  y max b a max b a

m 1 m 1 1 1

        

 

11 2  2  (^2) y 2 (^) 1 m m 1 ax b a 1 mm 1 ax b a

m   m          

Similarly, we get      

3  3  (^3) y 3 (^) 1 mm 1 m 2 ax b a

m      

4  4  (^4) y 4 (^) 1 mm 1 m 2 m 3 ax b a

m       

……………………………

nmn  (^) n yn mm m m n ax b a

    1  1  2 .....   1 

This may be rewritten as

mnn

n

n ax b a m

m n m n m mm y

   

6

2

log 2

log 10

x

x x

e

 A B A

B log  log

 A B
B
A

log (^) log log 

 

2 6 log( 3 5 ) log( 2 3 ) log( 1 ) 2 log 10

x    xx

e

  2 log( 3 5 ) log( 2 3 ) 6 log( 1 )

2 log 10

yx    xxe

Hence,

   n n

n n n

n n n

n

e

n x

n

x

n

x

n y ( 1 ) ( 1 )

2 log 10

1 1 1

2. (a)

2 4 2 4 6

  

x x e (b)cosh 4 x cosh 4 x

2 

(c) e x x

x sinh 3 cosh 2

 (d)

5 4

x x x

Sol : (a) Let

2 4 2 4 6

   

x x y e

2 4 2 4 6 6

x xe e

 ( ) 1296 ( 6 )

4 2 x 2 x ye e

hence ( ) 1296 ( 6 )

4 2 2 x n

x n (^) n dx

dn e dx

dn ye

   

n x n n x e e

4 2 2  2  12962 (log 6 ) 6

(b) Let y cosh 4 x cosh 4 x

2  

4 4 4 4 2

xx xx e e e e

  ( ) ( ) 2 ( )( ) 4

(^1 4) x 4 x 4 x 2 4 x 2 4 x 4 x e e e e e e

       

   2  4

xx xx y e e e e

hence,    8 ( 8 ) 0  4

n x nx n n nn yn e e e e

(c) Let y e x x

x sinh 3 cosh 2

 

  

2 2

3 x 3 x 2 x 2 x x e e e e e

( )( ) 4

3 x 3 x 2 x 2 x

x

e e e e

e (^)  

  

 

x x x x

x

e e e e

e (^) 5 5

 

   

 

x x x e e e

4 2 6 1 4

 

x x x y e e e

4 2 6 1 4

Hence,  

n x n x n x y (^) n e e e

4 2 6 0 ( 4 ) ( 2 ) ( 6 ) 4

(d) Let

5 4

x x x

y

Hence,  

5 4

x dx

dn

dx x

dn

dx x

dn y n n n n

1 4

 

n n

n n n

n

x

n

x

n

i.e

n n

n n n

n

n x

n

x

n y ( 5 ) 3 !( 5 4 )

 1  4 

Evaluate

  1. (i) 6 8

2 xx

(ii) 2 3 1

xxx

(iii) 2 7 6

2

2

xx

x

(iv) 4 12 9

2  

x x x

x (v)   a

tan^1 x (vi) tan^1 x (vii)  

x

x

tan

1

Sol : (i) Let 6 8

2  

x x

y. The function can be rewritten as ( 4 )( 2 )

x x

y

This is proper fraction containing two distinct linear factors in the denominator.

So, it can be split into partial fractions as

x

B

x

A

x x

y Where the constant A and B are found

as given below.

  x x

Ax Bx

x x

 1  A ( x  2 ) B ( x  4 ) -------------(*)

Putting x = 2 in (*), we get the value of B as 2

B ^1

  

n n

n n n

n n n

n

n x

n

x

n

x

n y ( 1 ) ( 1 )

1 2 1

  ( 1 ) 2

1 1 xn

n

x x

n

n

n n

n

(iii) Let 2 7 6

2

2

x x

x y (VTU July-05)

This is an improper function. We make it proper fraction by actual division

and later

spilt that into partial fractions.

i.e 2 7 6

2

2

7 2 2

 

x x

x x x x

x x

x y Resolving this proper fraction into partial fractions,

we get

x

B

x

A

y. Following the above examples for finding A &

B , we get

x x

y

Hence,  

 

n n

n n n

n

n x

n

x

n y ( 1 ) ( 2 )

1 1

i.e  

 1  1

2

9

n n

n n n x x

y n

(iv) Let ( 1 ) 4 12 9

2  

x x

x

x

x y

(i) (ii)

Here (i) is improper & (ii) is proper function. So, by actual division (i)

becomes

x x

x

. Hence, y is given by

2 ( 2 3 )

x x

y [( 2 3 ) 4 12 9

2 2 x   xx  ]

Resolving the last proper fraction into partial fractions, we get

2 2 ( 2 3 ) ( 2 3 ) ( 2  3 )

x

B

x

A

x

x

. Solving we get

A ^1 and 2

B ^3

2

2

3 2

1

x x x

y

n

n n n

n n n

n

n x n

n

x

n

x

n y ( 2 ) ( 2 3 ) 2

1

(v)   a

tan^1 x

Let   a

y  tan^1 x

 

(^1222)

x a

a

a a

x

y

  2 2

1 1

1 ( ) x a

a y D y D y D

n n n n

Consider ( )( )

2 2 x ai x ai

a

x a

a

( ) ( x ai )

B

x ai

A

 , on resolving into partial fractions.

   

x ai

i

x ai

i

 , on solving for A & B.

  

x ai

D

x ai

D

x a

a D

n n i n 2 i

1 2 1

1 1 2 2

1

 

n

n

n

n

x ai

n

x ai i

n

i ( )

1 1

-----------(*)

We take transformation xr cos ar sinwhere

2 2 rxa ,  

x

1 a

 tan

i xair cos  i sin  re

  

i x ai r i re

   cos  sin 

n

in

n n in r

e

x ai r e

n

in

n r

e

x ai

 

 

now(*) is

 

ininn

n

n e e ir

n y

1

 n 

r

n i n ir

y n

n

n

n

n sin

2 sin 2

1 1   

 

2. e sin bx c .

ax

Let y e sin  bx c .....( 1 )

ax  

Differentiating using product rule ,we get

y 1     

ax ax e cos bxcb sin bxcae

i.e. y 1  e  a  bx c  b  bx c 

ax sin   cos . For computation of higher order

derivatives

it is convenient to express the constants „a‟ and „b‟ in terms of the

constants r and

 defined by a  r cos& b  r sin,so that

2 2 rab and   a

  tan^1 b .thus,

y 1 can be rewritten as

y e  r   bx c   r   bx c 

ax 1 ^ cos sin   sin^ cos 

or y 1 er {sin bx c  cos cos bx c cos }

ax    

i.e. y 1  re sin  bx  c  .......... .( 2 )

ax

Comparing expressions (1) and (2), we write y 2 as

sin 2 

2 y 2 (^)  re bxc

ax

sin 3 

3 y 3 (^)  re bxc

ax

Continuing in this way, we get

sin 4 

4 y 4 (^)  re bxc

ax

sin 5 

5 y 5 (^)  re bxc

ax

y r e  bx c n 

n ax n ^ sin  

De sin bx c  r e sin bx c n ,

n ax n ax     where

2 2 rab &   a

  tan^1 b

Solve the following:

  1. (i) x x

2 3 sin cos (ii) x

3 3 sin cos (iii)cos x cos 2 x cos 3 x

(iv) sin x sin 2 x sin 3 x (v) e x

x cos 2

3 (vi) ex x

2 x 2 3 sin cos

The following formulae are useful in solving some of the above problems.

(i) 2

1 cos 2 ( )cos 2

1 cos 2 sin

2 2 x ii x

x x

(iii)sin 3 x 3 sin x 4 sin x ( iv )cos 3 x 4 cos x 3 cos x

3 3    

(v) 2 sin A cos B  sin A  B  sin A  B 

(vi) 2 cos A sin B  sin A  B  sin A  B 

(vii) 2 cos A cos B  cos A  B  cos A  B 

(viii) 2 sin A sin B  cos A  B  cos A  B 

Sol : (i) Let  x x 

x y x x cos 3 3 cos 4

1 cos 2 sin cos

2 3   

           2

3 cos 2

3 cos 3 4

0 2 cos 2 2

y n x n ^ n x n  x n^ 

n       

(ii)Let y =  

sin 6 3 sin 2

sin 2

sin 2 sin cos

(^33) 3 3 x x x x x x

 3 sin 2 x sin 6 x 

6 sin 6 2

  1. 2 sin 2 32
1  n 

x

n y x

n n n

(iii) )Let y =cos 3 x cos x cos 2 x

=  x xx cos 4 x cos 2 x cos 2 x  2

cos 4 cos 2 cos 2 2

1 cos 4 cos 6 cos 2 2

1 x x x

 x 

x x 1 cos 4 4

cos 2 cos 6 4

4 cos 4

2 cos 2

6 cos 6 4

n x

n x n y x

n n

n n

(iv) )Let y =sin 3 x sin xsn 2 x

sin  2 x  sin 4 x  sin 2 x

sin 2 x sin 4 x sin 2 x  2

x x

x sin 2 sin 6 2

1 cos 4

x x

x sin 2 sin 6 4

1 cos 4

6 sin 6 2

2 sin 2 2

4 cos 4 4

1   n 

x

n x

n y x

n n n n

(v) Let y e x

x cos 2

3 

y re  x n 

x  (^) n  cos 2 

3

where

2 2 r  3  2  13 &  

3

tan

1

 1  0

2 2 1

2  x yxyp y  --------------- (1) [  2 y 1 , throughout]

Equation (1) has second order derivative y 2 in it. We differentiate (1), n times,

term wise,

using Leibnitz‟s theorem as follows.

 1   0

2 2 1

2 Dx yxyp y

n

i.e ( 1 )      0

2 2 1

2 Dx yD xyD p y

n n n ---------- (2)

(a) (b) (c)

Consider the term (a):

  2 

2 D 1 x y

n . Taking uy 2 and ( 1 )

2 v   x and applying Leibnitz‟s theorem

we get

3 3 3

2 2 2

1   1   

   D uv Duv CD uDv C D Dv CD uDv

n n n n n n n n

i.e

 ( 1 ) ( ).( 1 ) ( ). ( 1 ) ( ) ( 1 ) ( ) ( 1 )

3 2 2

3 3

2 2 2

2 2

2 2

1 1

2 2

2 2 ^         

   D y x D y x CD y D x C D y D x CD y D x

n n n n n n n n

2 ( ) 2 

 (^) n    n    n   yn  

nn n y

nn y x ny x

 (^)   (^)   (^) n n n

n D 1 x y 1 x y 2 2 nxy 1 n ( n 1 ) y

2 2

2        ^ ----------- (3)

Consider the term (b):

D  xy 1 

n

. Taking uy 1 and vx and applying Leibnitz‟s theorem,

we get

2 1

2 1 2

1 1 ^1  1  

  D y x D y x CD y Dx C D y D x

n n n n n n

( ) 1.^ ( 1 ) 1 ( 2 ) 2 

 (^) n   n   yn  

nn y x ny

  n n

n D xy 1  xy  1  ny ---------- (4)

Consider the term (c):

n

n n D p y p D y p y

2 2 2 ( ) ( ) --------- (5)

Substituting these values (3), (4) and (5) in Eq (2) we get

 1  2 ( 1 )      0

2 2 1 1

2  x yn   nxyn   nnynxyn   nynp yn

ie  1  ( 2 1 ) 0

2 2 2 1

2  x yn   nxyn   n ynnynnynp yn

 1  ( 2 1 )   0

2 2 2 1

2  x yn   nxyn   pn yn  as desired.

2. Ifsin 2 log( 1 )

1  

y x or y  sin 2 log( x  1 ) or  

2 y  sin log( x  1 ) or

sin log( 2 1 )

2 yxx  , show that 1   2 1  1   4  0

2 2 1

2 xyn   nxyn   nyn

(VTU Jan-03)

Sol: Out of the above four versions, we consider the function as

sin ( ) 2 log( 1 )

1  

y x

Differentiating w.r.t x, we get

1 (^2) x

y y

ie

2 ( x  1 ) y 1  2 1  y

Squaring on both sides

2 2 1

2 xy   y

Again differentiating w.r.t x,

2 1 2 1

2 xyyy x    yy

or  1  2 ( 1 ) 1 4 ( 2 1 )

2 xyxy  yy

or  1  2 ( 1 ) 1 4 0

2 xyxyy  -----------*

Differentiating * w.r.t x, n-times, using Leibnitz‟s theorem,

1 2 1

2 2

2 1 2      

   D y D g x nD y D y

nn D y x nD y x

n n n n n n

On simplification, we get

2 2 1

2 xyn   nxyn   nyn

3. If x tan(log y ), then find the value of

2 1  x yn   2 nx  1 ynn ( n  1 ) yn(VTU July-04)

Sol: Consider x tan(log y )

i.e. tan x log y

1 

 or

x y e

tan^1 

Differentiating w.r.t x,

2 2

tan 1 1 1

1

x

y

x

y e

x

2 1

2  x yy iex yy  -----------*

We differentiate * n-times using Leibnitz‟s theorem,

We get

2 Dx yD y

n n

ie.

2 2 1

2 2

2 1

1 1

2 1 ^       

  D y x CD y D x CD y D x D y

n n n n n n

ie ( 2 ) 0 .... 0 2!

2 1   

n  ^  nynyn

nn y x ny x

2  x yn   nxynnnyn  

4. If y m^ y m 2 x

1 1  

, or  

m y x x 1

2

   or  

m y x x 1

2   

Show that 1  ( 2 1 )   0

2 2 2 1

2 xyn   nxyn   nm yn(VTU Feb-02)

Sol: Consider x

y

y y x y m

m m m 2

1 1 1     

1 2 1  ym^  xym   Which is quadratic equation in y m

1