Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Engineering Dynamics Homework, Exercises of Engineering Dynamics

dynamics practice problems including kinematics and rigid body motion

Typology: Exercises

2022/2023

Uploaded on 02/05/2025

hanlin-wang
hanlin-wang 🇺🇸

6 documents

1 / 3

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
H
o
m
e
w
o
r
k
A
s
s
i
g
n
m
e
n
t
5
P
r
o
b
l
e
m
1
I
l
l
u
s
t
r
a
t
i
o
n
G
i
v
e
n
:
d
,
=
d
a
o
r
r
,
=
L
h
=
1
5
0
m
m
=
0
-
1
5
m
C
o
e
f
f
i
c
i
e
n
t
o
f
R
e
s
t
i
t
u
t
i
o
n
:
0
.
6
(
S
t
e
e
l
-
S
t
e
e
l
)
0
.
4
(
S
t
e
e
l
-
B
r
a
s
s
)
2
3
T
o
f
i
n
d
:
A
n
g
u
l
a
r
V
e
l
o
c
i
t
y
o
f
t
h
e
b
a
r
'
w
'
i
m
m
e
d
i
a
t
e
l
y
a
f
t
e
r
i
m
p
a
c
t
.
A
s
s
u
m
p
t
i
o
n
s
:
T
h
e
c
o
n
n
e
c
t
i
n
g
b
a
r
i
s
o
f
n
e
g
l
i
g
i
b
l
e
m
a
s
s
.
S
o
l
u
t
i
o
n
:
S
t
e
f
:
R
e
f
e
r
e
n
c
e
f
r
a
m
e
s
.
(
T
h
i
s
a
l
s
o
t
e
l
l
s
u
s
M
,
=
M
z
)
/
^
,
f
u
"
n
I
.
"
i
B
r
a
s
s
.
.
÷
'
s
"
I
.
s
t
e
e
l
6
0
0
m
m
1
5
0
m
m
2
2
=
8
r
:
1
h
=
M
2
-
m
M
I
M
I
r
:
I
/
^
,
f
u
"
n
I
.
"
i
B
r
a
s
s
.
.
-
.
-
7
"
"
-
I
s
t
e
e
l
6
0
0
m
m
a
i
1
5
0
m
m
2
2
=
8
h
=
M
2
-
m
M
I
M
I
i
i
O
'
N
'
f
r
a
m
e
a
t
'
a
'
f
r
a
m
e
O
A
S
t
e
p
2
:
G
o
v
e
r
n
i
n
g
E
q
u
a
t
i
o
n
s
o
f
m
o
t
i
o
n
I
W
I
-
2
=
A
K
E
W
o
r
k
d
o
n
e
b
y
g
r
a
v
i
t
y
b
e
t
w
e
e
n
-
I
n
i
t
i
a
l
s
t
a
t
e
2
-
j
u
s
t
b
e
f
o
r
e
h
i
t
t
i
n
g
t
h
e
B
r
a
s
s
a
n
d
s
t
e
e
l
p
l
a
t
e
s
.
S
o
,
W
g
'
"
=
f
E
g
.
d
s
-
(
o
n
l
y
c
o
n
s
i
d
e
r
i
n
g
B
a
l
l
1
)
S
I
=
§
-
m
g
I
.
-
*
=
m
g
(
i
s
,
)
=
m
g
h
5
1
5
2
S
i
n
c
e
t
h
e
s
y
s
t
e
m
s
t
a
r
t
s
f
r
o
m
r
e
s
t
;
A
K
E
=
±
m
"
#
.
"
V
7
O
@
0
V
7
=
F
g
h
D
u
e
t
o
s
y
m
m
e
t
r
y
;
V
E
=
I
g
n
T
h
e
n
e
x
t
g
o
v
e
r
n
i
n
g
e
q
u
a
t
i
o
n
w
e
u
s
e
i
s
:
e
=
I
V
2
3
-
V
1
1
=
R
e
l
a
t
i
v
e
v
e
t
.
E
v
i
l
c
o
l
l
i
s
i
o
n
a
-
t
e
r
R
e
l
a
t
i
v
e
v
e
l
-
b
e
f
o
r
e
c
o
l
l
i
s
i
o
n
O
R
,
F
o
r
B
a
l
l
1
-
B
R
A
S
S
:
e
,
=
I
v
1
-
(
0
7
+
0
9
)
[
N
o
t
e
:
t
h
e
b
r
a
s
s
p
l
a
t
e
a
s
s
u
m
e
d
t
o
b
e
a
t
E
v
i
+
C
O
E
+
0
5
1
r
e
s
t
b
e
f
o
r
e
&
a
f
t
e
r
]
c
o
l
l
i
s
i
o
n
O
R
,
e
,
=
¥
.
(
V
i
i
=
-
u
g
h
N
9
)
V
e
l
o
c
i
t
y
o
f
B
a
l
l
1
j
u
s
t
b
e
f
o
r
e
c
o
l
l
i
s
i
o
n
.
O
R
,
1
1
%
7
1
1
=
e
,
V
i
=
e
,
E
g
h
S
i
m
i
l
a
r
l
y
;
1
1
%
1
1
1
=
e
s
I
g
h
t
P
o
s
t
c
o
l
l
i
s
i
o
n
/
^
,
f
u
_
.
'
_
:
,
B
r
a
s
s
.
.
-
i
f
'
s
I
"
.
s
t
e
e
l
i
.
.
-
i
f
"
"
I
^
,
f
u
_
'
_
:
,
B
r
a
s
s
/
s
t
e
e
l
1
2
v
N
i
s
i
N
u
i
t
"
v
1
N
i
i
=
"
v
e
i
B
U
T
"
i
t
"
i
t
T
h
i
s
c
a
u
s
e
s
r
o
t
a
t
i
o
n
o
f
t
h
e
b
a
r
C
o
m
p
u
t
i
n
g
"
t
A
r
e
q
u
i
r
e
s
t
h
e
r
e
l
a
t
i
v
e
v
e
l
o
c
i
t
y
e
q
u
a
t
i
o
n
1
W
2
i
t
1
:
W
n
a
i
'
A
'
2
ñ
0
A
i
O
'
µ
'
N
J
2
/
0
-
-
"
A
+
A
T
4
0
A
+
N
@
A
F
o
r
_
N
o
w
,
w
e
s
u
p
e
r
i
m
p
o
s
e
t
h
e
'
A
'
a
n
d
'
O
'
f
r
a
m
e
s
s
u
c
h
t
h
a
t
t
h
e
y
s
h
a
r
e
o
r
i
g
i
n
s
.
D
O
N
O
T
K
N
O
W
T
h
i
s
w
e
u
s
e
t
h
e
s
i
m
i
l
a
r
R
e
l
a
t
i
v
e
v
e
l
o
c
i
t
y
E
O
M
R
e
l
-
r
e
l
-
o
f
2
w
o
t
.
O
i
n
'
N
'
b
a
s
i
s
f
o
r
1
.
N
f
l
/
0
=
N
T
O
A
+
A
I
4
0
A
+
N
I
A
F
O
I
-
1
2
E
q
u
a
t
i
o
n
2
-
1
g
i
v
e
s
-
N
J
2
1
0
-
N
J
%
=
N
W
A
×
@
0
2
-
8
0
)
O
R
,
e
z
T
g
h
e
,
T
h
i
=
'
w
k
×
(
4
2
7
-
(
-
1
/
2
7
)
)
O
R
,
(
e
z
-
e
)
F
g
h
l
w
j
%
;
I
C
o
m
p
a
r
i
n
g
t
h
e
c
o
m
p
o
n
e
n
t
s
;
(
e
x
-
e
)
T
g
h
=
t
o
O
R
,
W
=
e
a
-
e
.
D
E
#
N
o
w
,
s
u
b
s
t
i
t
u
t
e
n
u
m
e
r
i
c
a
l
v
a
l
u
e
s
;
W
=
(
0
.
6
-
0
.
4
)
%
2
×
9
.
8
4
0
.
1
5
1
W
=
0
.
5
7
2
r
a
d
/
s
A
n
y
[
t
h
e
s
i
g
n
c
o
n
f
i
r
m
s
t
h
a
t
o
u
r
a
s
s
u
m
e
d
d
i
r
e
c
t
i
o
n
o
f
r
o
t
a
t
i
o
n
i
s
C
O
R
R
E
C
T
]
"
A
s
s
u
m
e
c
o
w
i
s
+
v
e
r
o
t
a
t
i
o
n
"
pf3

Partial preview of the text

Download Engineering Dynamics Homework and more Exercises Engineering Dynamics in PDF only on Docsity!

Ho mew or k Ass i gn m en t 5 P ro bl e m 1 Illu strat io n

Giv e n: ① d, = d a o r r , = L h = 150 mm = 0 - 1 5 m C o e ffi c i e nt o f R es ti tut i o n:

  1. 6 (S tee l- S te el )
  2. 4 (S te el - B ra ss )

T o fin d: Ang u l ar Vel oc ity o f th e b a r 'w ' im media te ly aft e r imp a ct.

As su mp t i on s : T h e co nn e cti n g ba r is o f neg li g ib le ma ss.

Sol u ti o n:

St ef : Re f e ren c e fram es.

( Th i s a ls o t ells us M, = M z)

  • (^) , ^f u " n I ." (^) i B r as s . (^) .. ÷'s "I st e el

6 0 0 m m

150 m m ↓

r : 1 22 =^8

h=

M 2 - m MI MI

r : I

  • (^) , f^ u " n I. " (^) i B ra ss

. .- - .- 7 " "I

s t e el

6 00 mm ai

1 50 m m ↓

h =

M 2 - m M I MI

i

i

O

' N 'f r ame

a t ' a 'f ram e

O A

Ste p 2 : Go ve rn i ng E quat i ons of m o tio n I W I- 2 = A KE Wo r k d o ne by grav i ty bet wee n ① - In it i a l s t ate 2 -^ ju^ s^ t^ b^ efo^ r^ e^ h^ it^ ting th e Bra ss an d st e el p la te s.

So, Wg'^ "^ =^ f^ E^ g.^ d-s^ (^ o^ nl^ y^ c^ ons^ ide^ r^ i^ ng^ Bal^ l^1 ) SI = § - m g I. - * ↑ = mg ( is ,) =m g h 5 1

S ince th e s yst em st ar t s fr o m re s t ; A KE = ± m " #. "V 7 @ O (^0) V 7 = F gh

Du e t o symm etr y ; V E = I gn

Th e n e x t g o ve rn i ng e qua ti on we use i s: e = I V 23 - V 11 = R el a ti ve vet. E v il

a- te r c ol l is ion R ela ti ve ve l - b e fo re co ll i si on

OR , For Ba ll 1 - BRA SS : e , = I v 1 - ( 0 7 + 0 9 ) [ No te : t h e b r ass pl at e E vi + COE + 0 51 a^ ss^ um^ ed^ t^ o^ b^ eat r e st be fo r e & a fte r ] coll i s ion O R, (^) e , =

¥.

(V ii =- ug h

N

9 ) Ve loc i ty o f Ba l l 1 j us t b e fo re c oll i si on.

O R , 1 1 % 7 11 = e , V i = e ,E gh Sim i l arl y; 11 % 11 1 = e s Ig ht

Po st c oll isi on

  • (^) , ^f u _. ' _: , Bra ss - ... - if' sI" st ee l
  • (^) , ^f u _' _: , i.. - i f ""I Br a ss

s tee l

v

N i si N ui t " v 1

Nii = "v e

→ i B U T (^) "i t ≠ " it Th is ca us es r otat ion of the b ar Co mpu ti n g "t A r eq uir e s th e re la tiv e ve lo cit y equ a t ion →

1 W 2

☑ it

Wn a i ' A' 2

0 A ñ O i

' μ'

NJ 2 / (^0) - -^ "^ ✓^ ◦^ A^ +^ AT^4 0 A^ +^ N^ @A^ ✗^ Fo^ r

_

N ow , w e sup er im p ose the ' A' a n d ' O'f r am es suc h th at the y sh a re ori gi n s.

DO N O T K N OW

T hi s w e u se th e si mi lar R e lati v e v elo c it y E OM

Re l - r e l - of 2 wo t. O i n' N ' basi s

f or 1. N fl / (^0) = NTOA + A I^4 0 A^ +^ NIA^ ✗^ F^ OI

Equa ti o n 2 -^1 g^ iv^ es^ - NJ 2 10 - N J % = NW A ×@ 02 - 8 0 )

O R, (^) e z T g h ↑ e,^ Th^ i^ =^ '^ wk^ ×^ (^4 27 -^ (-^1 /^2 7 ))

O R, (^) (ez - e ) Fg h ↑ lw^ j^ →^ %^ ; I ← Com p a ring t he c om p o ne n ts ;

(e x- e) Tgh = to

OR , (^) W = (^) ea - e. DE #

N o w, s ubs ti tute n um eri ca l val u es ; W = ( 0. 6 - 0. 4 ) % 2 × 9. 8 1 40. 15

W = 0. 5 7 2 ra d /s

An y [t^ he^ s^ ig^ n^ co^ n^ fi^ r^ ms^ tha^ t ou r a s sume d di rec tio n of r ot at io n is COR R EC T

]

"A ss um e c o w i s + ve r ota tio n"

P ro b le m 2 I ll us trat ion :

Giv e n: ① Id en ti ca l b a l ls i. e; PA = B I M A = MB c oef fici ent of rest i tu ti on , e = 0. 7

To f ind : ① Ve l oci ty of e ach b a ll j us t a f te r im pa c t % a ge loss o f KE d u e to co lli s io n

No p a rt ic ul a r a s su m pt i on s to H I GHLI GH T! Solu ti on : ^

Ste ph: R ef er en c e fr a me s *

0 , r

J

= 6 ft/S r VA

V B

A

B

, r

J

V B

A

B

' N' f ram e

S te p 2 : Go v er ni n g Eq uatio ns of M o t io n. A (^) C ons e rvat io n o f Li n ea r Mo m e nt um →

☒" J:O + ✗ " 5 : 1 0 = m " 5 7 10 + m Ñ f%

W e k n ow N J A lo i n itia l ve locities } Ny B l o i

i = VA Si n 30 ° ↑ - V A 05 30 05 an d,

= (^) ↳ ↑

s o; N^ #A^ lo^ +^ N^ J?/^0 =^ V^ A^ si^ n^30 °^ ↑^ +^ (^ VB^ -^ V^ a^ c^ o^ s^30 )^ ↑

"D ur i ng Col li s ion a t an an g le ; t he ta ng e n t ial c om po ne n t o f ve lo c ity do es no t cha nge. "

He r e ↑ i s t he t ang e nt i al d ir e c ti o n a t t he c o nta ct po i nt-

A f + V 4 5 + ✓ ¥? ↑ + U p? ↑ = V a s in 30 ° i + ( VB - Va c os 30 °

  • (^) f

fr om ①.

Vf t

i

OR, V^ Af^ t^ +^ Uft^ =^ V^ A^ s^ i^ n^3 0 °

a nd ;

¥? + U p? = VB - V a c os 3 0 °

B (^) Co e ff ic i en t o f R e s titu ti on ( By de fi nit io n app l ie s a lon g t he ] l oc a l no rm a l dir e c t io n

@ = (^) V fn ✓ I n

Vi? - V i n

O R , (^) e (v , - (Va co s 30 °) =^ ✓^ E^ n^ ✓^ fu

= 8 ft /s

= 8 - 6 c os 3 0 ° = 8 - 35 = 2. 8 0 4 ft /s -

O R , Tfn^ -^ ✓^ E^ n^ =^0.^7 (^8 - (^ -^5 -^1 9 6 ))=^9.^23

2 b

- 2 C

f ro m (^2) b (^) a n d 2 C i^ w^ e^ so^ lve^ s^ i^ mu^ lta^ n^ eo^ u^ sly^ to^ ob^ ta^ in;

Vfn = 6 - 0 2 f t/s (^) i

✓f Ba = - 3. 2 2 ft/ s

But w e a ls o kn o w by de fin iti on of 2 D c ol li s i on s that ; in the ta nge nti al di r e c ti o n th e (^) ↓v eloc i tie s o f th e pa r ti cle s re s p ec tiv e d o no t c han g e - So, (^) V ff = ✓ A it

✓♀ = V I.

AN D I

@^ f - " T aft = V A si n 30 ° ↑ i "T ff = 0

So , co mbin i ng r es ① & r e s

N T A f = 3 ↑

An d , N JB f =. 0 ↑

N ow , fo r s eco nd p ar t ; we ne ed to c o m pu te I K E i a nd E KE f.

IM V I. T: + ± m i?. T?

  • I n [ HE AR + AT? 117

=

Res 1

  • R es 2

(^2) i

O R, 1 17 71 1 = 6 - 72 6 f t/s

    1. 22 9 OR^ ,^1 1 Tf^ 'l^ l^ =^3.^2 2 f^ t^ /^ s

IKE; =

IM [ 3 6 + 6 4 ] = 5 0 m u n its.

I KE F = E M Tf.^ If^ +^ Im^ v^73.^ I^ "

Im [ " FA IR + 11 V 71 ]

± M ( ( 67 26 5 + 4 25 )

2 7. 80 37 m un it s.

-^ -

OR , AK E

/ d ec re ase £ L OS S

IKE : - IK E f

= 22. 1 96 2 m u n i t s.

S o, (^) % a ge L O SS = (^2 2). 1 96 2 M

(^50) m

OR , (^) % LOS S = 44. 39 25 % A y