Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Задачи по инженерной динамике: подготовка к экзамену, Study Guides, Projects, Research of Mechanical Engineering

Данный документ представляет собой набор задач по инженерной динамике, предназначенных для подготовки к экзамену. Задачи охватывают различные темы, включая кинематику, кинетику, принцип работы и энергии, одномерную кинематику, системы с массой и блоками, трение, относительную скорость и относительное ускорение. Задачи могут быть использованы студентами для самостоятельной подготовки к экзамену.

Typology: Study Guides, Projects, Research

2022/2023

Uploaded on 02/05/2025

hanlin-wang
hanlin-wang 🇺🇸

6 documents

1 / 9

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
pf3
pf4
pf5
pf8
pf9

Partial preview of the text

Download Задачи по инженерной динамике: подготовка к экзамену and more Study Guides, Projects, Research Mechanical Engineering in PDF only on Docsity!

Rennselaer Polytechnic Institute School of Engineering

ENGR 2090 Practice Problems: Exam 1: Engineering Dynamics

Section 03, Instructor: Professor Singh Due: NA Semester: Note the following: Fall 2022 Max points: NA

  • Use the blueprint provided on LMS for solving dynamics problems. Writing gov-erning equations and solving using vector equations will result in a significantpercentage of the assigned credit being awarded.
  • Although these problems are only representative, your crib sheet cannot includethese problems and their solutions.
  • The exam will primarily include the following concepts: Kinematics-Kinetics, WorkEnergy principle, 1D Kinematics, Mass-pulley Systems, Friction, Relative Velocity,Relative Acceleration.

1

  1. For the following expressions for acceleration, find the corresponding expressions forvelocity. Assume that the initial velocity at (t = 0) in the ‘N’ basis is ~v(t = 0) = 7.5 ˆi. (a) (b) ~~aa((tt) =) = ⇢lne( !⇢t^ eˆi! (^) t+ 3 (^) ) ˆi + (5cos 2 (sin!t)ˆ(2j!t) + 3cos 2 (!t))ˆj

2

  1. The spring is unstretched when x = 0. If the body moves from the initial position xspring on the body and (b) determine the work done on the body by its weight. If 1 = 100 mm to the final position x 2 = 200 mm, (a) determine the work done by the the velocity of the block reduces to half of its initial value during its motion between x 1 and x 2 , find the initial velocity of the block.

4

  1. The system is released from rest with the spring initially stretched 25 mm. First,compute the acceleration of the cart in this initial condition.velocity v of the 60-kg cart after it has moved 100 mm down the incline. Next, calculate the Also determine the maximum distance d traveled by the cart before it stops momentarily.Neglect the mass and friction of the pulleys and wheels.

5

Pr ob le m 2

B

p = 500 ' 30 ° ( i

i O

'N '

ñ

e n A

R-o T A = ie r + ro d o Now, s i nce path i s CIRCULAR,' II So , R-^ Of^ A^ =^ r o to / RO JA/ = 30 m i/ he r OR, (^) r 8 = 3 0 m i/ hr = 4 474 s OR, (^8) = 41 r ad /s 500 OR, (^8) = 0 - 088 rad/ s

No w , at th i s i nst ant i er = e t =

  • e^ ^ i No w,

ñ

ñ

i i 3 0 °

Q ab = (^) - 5 m i/ ur /s ay

  • (^) - 7. 33 f t / s" q, Wh at ar e t he com po nents o f-t his accel er atio n alo ng ↑ and j? NIB =

^

( i B. E ) i (^) -^ @^ a-^ B.^5 )^5

-^ - [^7.^33 95.^ Cos^3099 +^ s^ in^3 022 ]^ it^1 -^7 -^33 ai.^1 -^ sizogi^ +^ cos^ so^ %^ )]^ ;

1 "= 9 , co s 3 0 ° + 92 £ 3 0 ° ^ co s 3 0 °

÷

j^ ^^ =-^ ay,^ s^ in^30 °^ +^92

NE B = - 7. 33 cos 3 0 ° ↑ + 7. 33 s i n 30 ° j^ n O R;

But at^ t^ h^ is^ i nstant ;^ R-^02 A^ =^ N^ IA^ (^ si^ nce^ t^ he uni t ve ct o rs ar e coi ncid ent) So,

Naw AIB_ NIA - N IB

No w, R-^02 A^ = (i^ -^ ro^ "^ Je^ r^ +^ Cr^ o^ +^ ai^ o^ l^ io

Becaus e i t i^ s^ a^ cir^ cular^ ar^ c; F - o , É^ =^0

So, R-^ o^ @^ A - - ri te r +^ Oe^ i

And i N^ IA^ =^ - rot C- E ) = r ot i

Re visi ti ng eq. ① i N & AIB = NIA_Na^ →^ B

  • -^ ro^ t^ +^7.^33 m^30 )^ i^ +^7.^3 3 sui^30 j^ +^4 s^ "

N IA/ B = 10 - 2199 % + 3. 665 ↑ f t/ 5

And , AN IA/ 13 1 /= 10 - 86 ft /s u

Y as

P ro b le m 3 -

PAY

ATTE N T IO N T O

ALL STE PS.

St ep 1 : Re fe r ence fr ame s

/ m

K

g-

k

Tr ans for mat i o ns : i = ai cos o (^) i

j

ñ

  • ai s i nce^10 I = - ai si e + ai coso s t ep 2 : f re e Bo dy Diagr am

k

u^ m

K

g- :

  • Asi / m

Ñ

E - •

Fg St eph: Go ver ni ng E quati o n W 1 - 2 D KE

Spri ng , gravi t y

Wipi ng = f f spri ng' d i

1 N u

  • ka"g. d rag = - KI 2 /" "= 0 - 1

- 4 × 10. 2

I

v

  • o- F) ✗ 1000

= - 60 J

W gr avit y = f F gravity - di

  • f - m yi - de al =
  • my C- ai sio + ai co s o f. d a ai

21

N

an l

Mys i 0 (^4 -^2 1 )^ =^ m^ g.^ s^ i^ n^2 0 °^ (^0 -^2 -^0 -^1 ) = 7 × 9 - 8 ✗ Sui 20 ° ✗ 0. 1 = 2. 34 62 J

O R, 2 -^3462 -^60 = £ m ust - ≤m oi

O R, ( Give n i n t he pr o bl em t h at Vp = Vi / 2 )

OR, We^2 1.^963

OR, (^) D= 4. 6865 m /s (^) As