Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Engineering Dynamics Practice Problems, Study Guides, Projects, Research of Mechanical Engineering

Engineering Dynamics practice problems

Typology: Study Guides, Projects, Research

2022/2023

Uploaded on 02/05/2025

hanlin-wang
hanlin-wang 🇺🇸

6 documents

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
E
x
a
m
2
;
P
r
a
c
t
i
c
e
P
r
o
b
l
e
m
1
G
i
v
e
n
:
M
y
=
M
2
=
M
I
,
=
0
.
6
;
0
2
=
0
-
9
S
o
l
u
t
i
o
n
:
T
h
e
r
e
a
r
e
2
c
o
l
l
i
s
i
o
n
s
.
T
h
e
y
a
r
e
p
a
r
t
i
a
l
l
y
i
n
e
l
a
s
t
i
c
.
S
o
,
w
e
c
a
n
o
n
l
y
c
o
n
s
e
r
v
e
l
i
n
e
a
r
m
o
m
e
n
t
u
m
f
o
r
t
h
i
s
p
r
o
b
l
e
m
!
C
o
l
l
i
s
i
o
n
1
:
(
A
I
D
c
o
l
l
i
s
i
o
n
)
A
l
o
n
g
M
I
V
i
,
i
t
M
z
(
O
)
=
M
,
I
f
+
M
y
T
a
b
O
R
,
m
y
r
i
a
=
m
v
i
o
a
i
t
m
u
.
t
t
,
O
R
,
T
h
i
s
i
s
o
n
e
e
q
u
a
t
i
o
n
w
i
t
h
m
o
r
e
t
h
a
n
o
n
e
u
n
k
n
o
w
n
s
!
S
o
,
w
e
u
s
e
t
h
e
e
f
f
i
c
i
e
n
c
y
o
f
c
o
l
l
i
s
i
o
n
t
o
f
i
n
d
a
s
e
c
o
n
d
e
q
u
a
t
i
o
n
!
I
,
=
V
2
0
-
u
p
)
(
V
i
i
_
o
g
O
R
,
e
v
i
:
(
V
2
6
-
v
i
d
)
N
o
w
,
C
o
l
l
i
s
i
o
n
2
(
A
2
D
c
o
l
l
i
s
i
o
n
)
T
h
e
c
o
l
l
i
s
i
o
n
i
s
"
P
A
R
T
I
A
L
L
Y
"
i
n
e
l
a
s
t
i
c
.
B
U
T
L
I
N
E
A
R
M
O
M
E
N
T
U
M
i
s
c
o
n
s
e
r
v
e
d
!
M
V
a
,
i
-
X
V
2
6
+
2
1
5
,
6
o
r
,
4
h
,
=
v
q
c
o
s
o
i
t
v
y
s
i
.
n
o
-
5
+
2
1
6
7
O
R
,
2
S
C
A
L
A
R
E
Q
U
A
T
I
O
N
S
-
A
.
2
.
8
2
8
=
V
2
,
f
C
o
s
0
2
,
6
+
1
3
,
6
2
.
8
2
8
=
A
t
t
h
i
s
s
t
a
g
e
,
I
h
a
v
e
-
V
4
6
,
V
3
,
6
,
0
B
}
a
l
l
a
s
u
n
k
n
o
w
n
s
(
3
)
a
n
d
o
n
l
y
2
e
q
u
a
t
i
o
n
s
!
W
e
w
i
l
l
u
s
e
t
h
e
e
f
f
i
c
i
e
n
c
y
r
e
l
a
t
i
o
n
t
o
o
b
t
a
i
n
t
h
e
3
ʳ
e
q
u
a
t
i
o
n
a
n
d
m
a
k
e
t
h
e
s
y
s
t
e
m
d
e
t
e
r
m
i
n
i
s
t
i
c
.
e
z
=
V
3
6
n
V
y
n
6
L
i
n
-
Y
i
n
0
%
0
.
9
=
1
%
0
.
i
-
V
2
0
.
:
)
w
h
e
r
e
n
i
s
t
h
e
n
o
r
m
a
l
d
i
r
e
c
t
i
o
n
!
J
i
.
i
i
i
.
i
3
O
R
,
0
.
9
=
O
R
,
O
R
,
0
-
6
×
5
=
V
2
6
-
V
i
t
(
A
s
s
u
m
e
V
I
>
V
1
6
)
0
1
4
3
=
V
2
6
-
V
1
0
-
i
2
S
o
,
f
r
o
m
I
2
V
2
6
=
4
m
1
5
i
v
#
1
m
/
s
(
A
s
s
u
m
p
t
i
o
n
i
s
c
o
r
r
e
c
t
)
s
o
,
V
a
t
=
4
9
;
i
t
=
I
a
i
S
o
l
v
e
s
y
s
t
e
m
o
f
E
q
u
a
t
i
o
n
s
!
F
r
o
m
A
2
i
-
3
1
°
5
3
7
4
-
P
l
u
g
g
i
n
g
t
h
i
s
i
n
t
o
C
f
A
n
d
f
r
o
m
B
E
l
(
2
T
h
e
r
e
f
o
r
e
i
A
K
E
a
c
r
o
s
s
t
h
e
2
"
P
a
r
t
i
a
l
l
y
"
i
n
e
l
a
s
t
i
c
c
o
l
l
i
s
i
o
n
s
i
s
-
m
(
5
)
7
0
+
0
I
n
i
t
i
a
l
K
E
o
f
t
h
e
s
y
s
t
e
m
"
5
m
1
5
"
2
1
3
±
m
1
2
.
9
2
9
9
7
£
2
m
(
1
-
7
9
1
)
"
+
2
m
W
"
B
a
l
l
3
B
a
l
l
2
B
a
l
l
.
K
E
;
=
1
2
.
5
m
J
n
a
n
d
,
K
E
f
=
4
.
2
8
3
3
+
3
.
2
0
7
8
+
0
-
5
m
=
M
y
=
2
m
i
r
ñ
0
2
=
3
0
0
V
2
,
b
s
i
n
o
3
2
^
'
l
N
4
5
°
3
v
o
R
e
b
o
u
n
d
a
n
g
l
e
!
/
q
e
z
a
i
y
i
o
n
)
(
E
)
a
i
9
5
°
y
i
=
V
i
t
+
U
!
v
i
i
.
O
.
3
l
L
1
0
2
e
n
a
,
%
i
ñ
O
R
,
4
c
o
s
0
+
Y
s
i
O
j
=
(
V
2
6
c
o
s
0
+
2
4
6
)
i
+
V
2
6
t
r
i
o
V
3
6
-
V
2
0
c
o
s
0
(
4
2
-
0
)
2
.
5
4
6
=
V
3
6
-
V
}
L
o
s
o
c
O
R
,
U
s
t
=
1
.
7
9
1
m
/
s
V
2
8
C
o
s
0
=
-
0
-
7
5
4
6
6
a
n
d
E
l
i
t
o
m
O
=
2
.
8
2
1
-
0
-
7
5
4
6
=
a
n
d
V
2
,
6
=
C
.
8
2
8
/
2
+
(
-
0
-
7
5
4
6
)
-
=
2
.
9
2
6
9
4
4
m
/
s
>
0
=
-
7
5
-
0
5
7
9
0
7
-
9
9
0
9
8
1
m
J
T
h
e
r
e
f
o
r
e
;
%
a
g
e
c
h
a
n
g
e
=
1
2
.
5
-
7
2
,
9
1
×
1
0
0
=
3
6
%
L
o
s
s
i
n
K
E
C
o
l
l
i
s
i
o
n
I
L
o
t
s
i
n
K
E
=
1
2
-
5
-
E
.
f
i
#
t
t
m
-
4
D
-
=
3
2
%
L
O
S
S
c
o
l
l
i
s
i
o
n
2
F
i
n
e
=
8
.
5
-
7
.
9
9
0
9
1
0
0
f
.
5
=
5
-
9
8
9
%
L
o
s
s
.
pf2

Partial preview of the text

Download Engineering Dynamics Practice Problems and more Study Guides, Projects, Research Mechanical Engineering in PDF only on Docsity!

Ex am 2 ; Pr a ct i c e P r ob le m 1

G iv e n: M y = M 2 =M I, = 0. 6 ; 0 2 = 0 - 9

Sol uti on: Th er e are 2 c o lli si o n s. T h ey are pa rti al ly in el a s tic. S o , w e can o nly con se rv e l i nea r mom ent u m f o r th i s pro b l em! Co ll isi on 1 : (A ID co llis i o n) A l o ng ↑

M I Vi , i t M z (O ) = M, If + My Ta b

OR , m yria = m v ioa it m u .t t , O R,

Thi s i s one eq ua ti on w ith m or e th a n o ne un k n o wns!

So , w e u se the ef fi c i ency o f co l lis i on to f in d a sec on d eq uat i o n! I, = V 20 - up) ( V i i_o g O R, e^ vi^ :(^ V^2 6 - vi^ d^ )

N ow , C ol l is io n 2 (^ A^2 D^ col^ l^ isi^ on^ )

The c ol li sion i s "P AR TIA LL Y " in el as ti c. BUT L I NE AR M OM EN T UM i s c on se rv e d!

M V a, i - X V 2 6 + 215 , 6 o r, 4 h , = v qc os oit v y si. n o - 5 + 21 6 7

O R , 2 S^ CA^ L^ AR^ E^ QU^ ATION^ S-

A. 2.^8 28 =^ V^2 ,^ f^ C^ os^0 2 ,^6 +^1 3 ,^6

  1. 8 28 =

A t t his st age , I ha v e - V 4 6 , V 3 , 6 , 0

B

all as unk n ow ns ( 3 ) and onl y 2 eq uati ons! W e wi ll us e th e effi ci ency re lat io n t o ob ta in th e 3 ʳ ᵈ e q ua ti on a nd ma ke t he s yst e m d e te r mi ni st ic.

ez =^ V^3 6 n^ Vyn

Li n - Y in

0 % 0. 9 = 1 % 0. i - V 20. :)

w he re n is th e n or m al d i r ec t ion!

J i. ↑i^ i 3 i^.^ i

O R , 0. 9 =

O R ,

OR ,^0 -^6 ×^5 =^ V^26 - V^ i^ t^ (A^ s^ s^ um^ e^ V^ I^ >^ V^1 6 ) 0 1 4 3 = V 26 - V 10 -

i

S o, f rom ① I (^2) V 2 6 = 4 m 1 5 i v # 1 m /s (A s s um pti o n i s cor r ec t) s o , V at = 4 9 ; it = I ai

S ol ve syst em of E qu a tion s!

Fr om A^2 ⑥ i

5 37 4 - -^3 1 °

Pl u ggi n g this in to C^ f

A n d fr om B

E l

T h er ef o r e i AKE^ ac^ ro^ ss^ the^2 "P^ ar^ tia^ l^ ly^ "^ i^ n^ e^ la^ s^ t^ i^ c^ co^ l^ l^ is^ ion^ s^ is^ -

≤m ( 5 ) 70 + 0

I ni tia l K E of t he s ys t em

5 m 1 5

" 2

± m 1 2. 92 9 97 £ 2 m ( 1 - 79 1 ) "

  • (^2) mW "

Ba ll 3

Ba ll 2

Ba ll ①

n •. K E; = 1 2. 5 m J

a nd, KEf = 4. 2 83 3 + 3. 2 07 8 + 0 - 5 m

=

M y = 2 m

i

r ñ

V 2 ,b s in o

'^ ^

l

N

v

o

Reb o u nd a ng le!

q

ez a i y i on )

↑ (E)

ai ↑ 95 °

y i = V i t + U!

v i i. (^) O

lL 1 02 e

na, %

i

ñ

O R , 4 c os 0 ↑ + Y s i O j = (V 26 c os 0 + 24 6 ) i + V 2 6 t rio ↑

V 36 - V 20 cos 0

( 42 - 0 )

  1. 546 = V 36 - V} Lo so^ c

OR , Us^ t^ =^1.^79 1 m^ /s

V 2 8 Cos 0 = - 0 - 754 66

and E^ l^ i

t om O = 2. 82 1

  • 0 - 7 546 =

and (^) V 2 , 6 = C^.^8 28 /^2 +^ (-^0 -^75 46 )^ -^ =^2.^926 944 m/s

> 0 =^ -^7 5 -^0 5 79

7 - 99 0 9 81 m J

Th er e for e ;^ %^ ag^ e^ c^ ha^ n^ ge^ =^

1 2. 5 - 7 2 , 9 1 × 10 0

= 36 %^ Lo^ ss^ in^ K^ E

C oll is io nI →

Lot s i n KE = 12 -^5 - E.f^ i#^ ttm--^4 D^ =^32 %^

LO SS

c olli sio n 2

F ine =

f. 5

= 5 -^989 %^ Lo^ ss.

P ra ct ic e P robl e m? E xa m 2

Q^ s

V ☒ = 5 m /s Ap : 2 m 1 6 "

r 4 = (^5 0) b (^0) V mm 1 0 2 = 5 0 0

12 = 3 0 0 m m

1 •^ fi^ n^ d

p

gov er ni ng E qua tio n- N J P = N - O °

i

i (^) 'N'

t

ñ

i s

A

Oc r ig i d ) JP / 0 + N WA ✗ po p

OR, N IP _ NW^ A^ ✗^ T^ OP Le t NW A = Wa k o r W A 9 3 N IP = Wa a s ✗ 49 = l, wa ai

i % :

O R,

Tr a n sfo rm at io n

i %

a s = c oso , I + sin o , ↑ ai = co s o, i - s in o, ↑

so , N^ IP^ =^ Awa^ co^ s^0 ,^5 + 1 , WA si n o,?

2 F i nd IP? G ov erni n g E qua t io n NIP = N T^ O^ +^ Ag^ PO^ +^ NI^ A^ ✗^ TO^ P^ +^ N^ ot/^ NIA^ ✗^ TO^ P^ )

  • 28 A^ ✗AT^ Pl^ o ri gi d

W aa i x (w a a i x e, a ;)

( r i g id)

OR , NI P = (^) ✗ A a s ✗ l, a i +

OR, NI ' = 4 h a a s + Wa a s ✗ Gw a n

OR , N^ IP^ =^ l,^ da^ ai^1 ,^ w^ a'^ ai

(^3) Fi nd Wp a and Wo p? N o w, f irs t e xp r ess in g v e lo ci t y of 0 w o t- Pi

N J P + B IN D + NI B × IPQ Np? ri gi d

O R, - 5 j = di wa su it, it Gw a lo se, I + (W B % ✗ - lab ,)

  • 5 5 = l , W A s ui t, i t G W A c os 015 - la ws %

T r a ns fo rm a tio n % ↑

c onve r t to { 1 , 5 }.

OR,

A

^ 02

b- = _s in Oi + c os 0 2 J b) = c ol ori + si no, J O R, - 5 5 - l , Wa s in o, it liw a c o so , ;- l aw, s in g? 12 W B co s 0 2 J OR , TWO^ S^ CAL^ AR^ E^ H

O =L , WA Se rio , + l y WB s i n Or

A nd, ' -^5 =^ G^ WA^ co^ so,^ -^ l^ a^ w,^ c^ o^ s^ on

A

B

Un kn own s - (WA , W B )!! A (^) ✗ lo se , - B^ ✗ s it/

  • 5 si n o, = 1 2 WB ( sin O zl o so , + c os O rs ino ,)

OR, WB^ =^5 Si^ n^01 la si n ( 02 + 9 )

A (^) I cos o ut B^ sin^ Or

  • 5 sin 0 2 = l , w a (i n o, co s out c os o, si n ce a )

O R , WA^ =^ -^55 in^ O^ r

1 , S ui ( 01 1 - 0 2 )

    • W pa

(^4) f in d ✗ p a O R; 41 1.

For thi s p rob lem ; E xpr es s rel a t ive a cc e le rat i on of Q w ot. P

N = "I " + Ba ra^ -^ N^ IB^ ✗^ T^ PQ^ +^ No^ B^ ✗ (N^ iB^ xFP^ Q^ )

  • C^ or^ io^ l^ is^0 OR , (^2 5) = l i r a a i - l, w a i t 12 h , b i - l a W bbl

U se t rans fo r ma ti on s h er e-

or , 25 = e r a (S ino , i t cos o,j ) - l ,W a~ ( c ost , i- si no,; )

  • 1 2 x p C - A r io , i + co so ,; ) -

la WB" (co s O ri + si n o r; )

2 Sc ala r Eq uat io ns -

D = I/✗^ A^ s^ in^ o,^ - e,^ w^ ar^ c^ oso^ ,^ -^ y^ a,^ sin^ g-^ la^ wg^ oso,

2 = (^) I/ ✗ A Co so, + Wa r s i no , + l ax, co s or - law s si n o r

U NK N OWNS - ✗ A /✗ B)

e qu at i ons ar e l i ne ar i n t he un kno w ns.

S OLV E.. _.