Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Exercise Sheet - Taylor Polynomials and Limits, Exercises of Mathematics

A math exercise sheet focusing on calculating taylor polynomials and finding limits of various functions. The sheet includes 12 exercises, each asking for the calculation of a taylor polynomial of a given order for a specific function, as well as determining the remainder using peano's notation. Additionally, there are five exercises dedicated to finding limits of functions. The exercises cover topics such as logarithmic functions, trigonometric functions, and exponential functions.

Typology: Exercises

2019/2020

Uploaded on 03/18/2020

unknown user
unknown user 🇺🇬

1 document

1 / 1

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Foglio di esercizi 6,10 ·xi ·2019
1. Calcola il polinomio di Taylor di ordine
n
delle seguenti funzioni, e indica il
resto di Peano o(xk)con kpi `
u grande possibile.
a. f(x) = x2(x3+1)4,n=10.
b. f(x) = log(1+3x5),n=12.
c. f(x)=(sin(x))3,n=6.
d. f(x) = exsin(2x),n=4.
e. f(x) = log(sin(x) + cos(x)),n=4.
g. f(x) = arcsin(x),n=5.
h. f(x) = log(3+sin(x)),n=3.
2. Calcola il polinomio di Taylor di ordine
n
con centro
x0
delle seguenti funzioni,
e indica il resto di Peano o((xx0)k)con kpi `
u grande possibile.
a. f(x) = ex,x0=2,n=3.
b. f(x) = sin(x),x0=2019π,n=5.
c. f(x)=(x+1)3,x0=2,n=10.
d. f(x) = x33x,x0=1,n=3.
e. f(x) = arctan(ex),x0=0,n=3.
3. Calcola i limiti seguenti.
a. limx0x22+2cos(x)
x4.
b. limx0xsin(x)
xarctan(x).
c. limx0
3
1+x+3
1x2
1cos(x)+x4.
d. limx0(1+x+x2)1/x
1−(3x+1)cos(x).
e. limx0arctan(x5)−(arctan(x))5
x7.
4. Risolvi le seguenti disequazioni.
a. sin(x)< x.
b. cos(x)> 1 +x2
2.
c. sin(x)> x x3
6.

Partial preview of the text

Download Exercise Sheet - Taylor Polynomials and Limits and more Exercises Mathematics in PDF only on Docsity!

Foglio di esercizi 6, 10 ·xi· 2019

  1. Calcola il polinomio di Taylor di ordine n delle seguenti funzioni, e indica il resto di Peano o(xk) con k pi `u grande possibile. a. f(x) = x^2 (x^3 + 1 )^4 , n = 10. b. f(x) = log( 1 + 3x^5 ), n = 12. c. f(x) = (sin(x))^3 , n = 6. d. f(x) = ex^ sin(2x), n = 4. e. f(x) = log(sin(x) + cos(x)), n = 4. g. f(x) = arcsin(x), n = 5. h. f(x) = log( 3 + sin(x)), n = 3.
  2. Calcola il polinomio di Taylor di ordine n con centro x 0 delle seguenti funzioni, e indica il resto di Peano o((x − x 0 )k) con k pi `u grande possibile. a. f(x) = ex, x 0 = 2 , n = 3. b. f(x) = sin(x), x 0 = 2019π, n = 5. c. f(x) = (x + 1 )^3 , x 0 = 2 , n = 10. d. f(x) = x^33 −x, x 0 = 1 , n = 3. e. f(x) = arctan(ex), x 0 = 0 , n = 3.
  3. Calcola i limiti seguenti. a. limx→ 0 x^2 −^2 + x^24 cos(x). b. limx→ (^0) x−x−arctansin(x()x). c. limx→ 03 √^11 +−xcos+(^ √^3 x)+^1 −xx 4 − 2. d. limx→ (^0 1) −((^1 3x++x+ 1 x) 2 cos)1/x(√x). e. limx→ 0 arctan(x^5 )−( x 7 arctan (x))^5.
  4. Risolvi le seguenti disequazioni. a. sin(x) < x. b. cos(x) > 1 + x 22. c. sin(x) > x − x 63.