Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Exam 3 with Answers - Applied Calculus | MA 139, Exams of Calculus

Material Type: Exam; Class: Applied Calculus; Subject: Mathematics; University: Southeast Missouri State University; Term: Spring 2009;

Typology: Exams

Pre 2010

Uploaded on 08/08/2009

koofers-user-lue
koofers-user-lue ๐Ÿ‡บ๐Ÿ‡ธ

10 documents

1 / 1

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
MA-139 Applied Calculus - Exam 3 SAMPLE AN SW ERS
April 24, 2009
Be sure to show work for every problem.
1. y= (40 + x) (16 ๎˜€2x))x=๎˜€16 (24 trees per acre).
2. F(x) = 3x+ 1200x๎˜€1)x= 20,y= 30.
3. Find the โ€ฆrst derivative of the following functions:
(a) f0(x) = 0:4e0:4x(b) g0(t) = 2t
t2๎˜€7(c) f0(x) = ex
x+exln x
(d) f0(x) = 1 ๎˜€1
x(ln x)2(e) dy
dx = 2ex(ex๎˜€5) (f) f0(x) = 0
(g) f0(x) = (ex+ 3) ๎˜’1
x+ ln x๎˜“(h) f0(x) = 1
2ex=2=1
2(ex)๎˜€1=2ex(i) f0(๎˜’) = 2 + 6๎˜’๎˜€2๎˜’e(๎˜’2)
(j) f0(x) = x1
xex(xex+ex) + ln (xex)
4. (a) x=r3
2.
(b) Absolute minimum at x=๎˜€5; Absolute maximum at x= 3.
5. y=e2
2+e2
4(x๎˜€2).
6. (a) Q(t) = 100eln(1=2)=53000t.
(b) Q0(t) = ln (1=2)
530 e5 ln(1=2)=53 ๎˜™ ๎˜€1:225 ๎˜‚10๎˜€3.
7. Show that F0(x) = xe3x.
8. Evaluate the following integrals (remember the โ€˜+Cโ€™):
(a) ex+1
2x2+C(b) 1
3t3๎˜€7t+C(c) x๎˜€ln x+C(d) 0:1x2๎˜€1
x+C
(e) et๎˜€3
4t4=3+C(f) x๎˜€e2๎˜€2e๎˜+C(g) 2
3x3=2+C(h) 2 ln v+1
2v2+C
(i) x+ 2 ln x+2
3x3+1
4x4+C(j) 1
6x3+1
12x4+C
9. f(x) = 2px๎˜€3 ln x๎˜€1 + 3 ln4.
10. On the graph below, label all inโ€กection points with a F, all areas of positive concavity with a [and
all areas of negative concavity with a \.
1

Partial preview of the text

Download Exam 3 with Answers - Applied Calculus | MA 139 and more Exams Calculus in PDF only on Docsity!

MA-139 Applied Calculus - Exam 3 SAMPLE AN SW ERS

April 24, 2009 Be sure to show work for every problem.

  1. y = (40 + x) (16 2 x) ) x = 16 ( 24 trees per acre).
  2. F (x) = 3x + 1200x^1 ) x = 20, y = 30.
  3. Find the ร–rst derivative of the following functions: (a) f 0 (x) = 0: 4 e^0 :^4 x^ (b) g^0 (t) = 2 t t^2 7 (c) f 0 (x) = e

x x

  • ex^ ln x

(d) f 0 (x) = 1

x (ln x)^2

(e) dy dx = 2e

x (^) (ex (^) 5) (f) f 0 (x) = 0

(g) f 0 (x) = (ex^ + 3)

x

  • ln x

(h) f 0 (x) =

ex=^2 =

(ex)^1 =^2 ex^ (i) f 0 () = 2 + 6 2 e(

(j) f 0 (x) = x

xex^ (xe

x (^) + ex) + ln (xex)

  1. (a) x =

r 3 2

(b) Absolute minimum at x = 5 ; Absolute maximum at x = 3.

  1. y = e^2 2

e^2 4 (x 2).

  1. (a) Q (t) = 100eln(1=2)=^53000 t.

(b) Q^0 (t) = ln (1=2) 530 e5 ln(1=2)=^53  1 : 225  10 ^3.

  1. Show that F 0 (x) = xe^3 x.
  2. Evaluate the following integrals (remember the รซ+Cรญ): (a) ex^ +

x^2 + C (b)

t^3 7 t + C (c) x ln x + C (d) 0 : 1 x^2

x

+ C

(e) et^

t^4 =^3 + C (f) x

e^2 2 e

  • C (g)

x^3 =^2 + C (h) 2 ln v +

v^2 + C (i) x + 2 ln x +

x^3 +

x^4 + C (j)

x^3 +

x^4 + C

  1. f (x) = 2 p x 3 ln x 1 + 3 ln 4.
  2. On the graph below, label all inรกection points with a F, all areas of positive concavity with a [ and all areas of negative concavity with a .