Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Excercises of Integration, Exercises of Mathematics

Substitution,Integration By Parts,Reduction Formulas,Trigonometric Integrals,Rational Functions and Miscellaneous From The Chines University Hong Kong.

Typology: Exercises

2021/2022

Uploaded on 02/11/2022

koss
koss 🇺🇸

4.8

(16)

243 documents

1 / 8

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
1
Exercise on Integration
1.1 Substitution
Use a suitable substitution to evaluate the following integral.
1. Zdx
25x
2. Ze3x+ 1
ex+ 1 dx
3. Zx
1x2dx
4. Zx23
1 + x3dx
5. Zxdx
(1 + x2)2
6. Zdx
x(1 + x)
7. Z1
x2sin 1
xdx
8. Zxex2dx
9. Z(ln x)2
xdx
10. Zexdx
2 + ex
11. Zdx
ex+ex
12. Zcos x
xdx
13. Ztan xdx
14. Zdx
1 + ex
15. Zx(x2+ 2)99dx
16. Zx
25 x2dx
17. Zx
3x2+ 1dx
18. Zx2
9x3dx
19. Zx(x+ 2)99dx
20. Zxdx
4x+ 5
21. Zxx1dx
22. Z(x+ 2)x1dx
23. Zxdx
x+ 9
24. Zx3(1 + 3x2)1
2dx
1.2 Integration By Parts
1. Zln xdx
2. Zx2ln xdx
3. Zln x
x2
dx
4. Zxexdx
pf3
pf4
pf5
pf8

Partial preview of the text

Download Excercises of Integration and more Exercises Mathematics in PDF only on Docsity!

Exercise on Integration

1.1 Substitution

Use a suitable substitution to evaluate the following integral.

dx √ 2 − 5 x

e 3 x

  • 1

ex^ + 1

dx

x √ 1 − x^2

dx

x 2 3

1 + x^3 dx

xdx

(1 + x^2 )^2

dx √ x(1 + x)

x^2

sin

x

dx

xe −x^2 dx

(ln x) 2

x

dx

exdx

2 + ex

dx

ex^ + e−x

cos

x √ x

dx

tan xdx

dx

1 + ex

x(x 2

99 dx

x √ 25 − x^2

dx

x √ 3 x^2 + 1

dx

x^2 √ 9 − x^3

dx

x(x + 2) 99 dx

xdx √ 4 x + 5

x

x − 1 dx

(x + 2)

x − 1 dx

xdx √ x + 9

x 3 (1 + 3x 2 )

1 (^2) dx

1.2 Integration By Parts

ln xdx

x 2 ln xdx

ln x

x

dx

xe −x dx

x 2 e − 2 x dx

x cos xdx

x 2 sin 2xdx

(ln x) 2 dx

sin − 1 xdx

x tan − 1 xdx

ln(x +

1 + x^2 )dx

x sin 2 xdx

sin(ln x)dx

x sin 4xdx

x cos − 1 xdx

tan − 1 xdx

x 99 ln xdx

ln x

x^101

dx

x sec 2 xdx

e 2 x cos 3xdx

1.3 Reduction Formula

Prove the following reduction formulas.

  1. In =

x n e ax dx; In =

xneax

a

n

a

In− 1 , n ≥ 1

  1. In =

cos n xdx; In =

sin x cosn−^1 x

n

n − 1

n

In− 2 , n ≥ 2

  1. In =

sin n x

dx; In = −

cos x

(n − 1) sin n− 1 x

n − 2

n − 1

In− 2 , n ≥ 2

  1. In =

x n cos xdx; In = xn^ sin x + nxn−^1 cos x − n(n − 1)In− 2 , n ≥ 2

  1. In =

dx

(x^2 − a^2 )n^

; In = −

x

2 a^2 (n − 1)(x^2 − a^2 )n−^1

2 n − 3

2 a^2 (n − 1)

In− 1 , n ≥ 1

  1. In =

xndx √ x + a

; In =

2 xn

x + a

2 n + 1

2 an

2 n + 1

In− 1 , n ≥ 1

  1. In =

(ln x) n dx; In = x(ln x) n − nIn− 1 , n ≥ 1.

  1. In =

0

x n

1 − xdx; In =

2 n

2 n − 3

In− 1 , n ≥ 2.

1.6 Rational Functions

Evaluate the following integrals of rational functions.

x^2 dx

1 − x^2

x^3

3 + x

dx

(1 + x)^2

1 + x^2

dx

dx

x^2 + 2x − 3

dx

(x^2 − 2)(x^2 + 3)

x^2 + 1

(x + 1)^2 (x − 1)

, dx

x 2

(x^2 − 3 x + 2)^2

, dx

x^2 + 5x + 4

x^4 + 5x^2 + 4

, dx

dx

(x + 1)(x^2 + 1)

2 x 3 − 4 x 2 − x − 3

x^2 − 2 x − 3

dx

4 − 2 x

(x^2 + 1)(x − 1)^2

dx

dx

x(x^2 + 1)^2

x^2 dx

(x − 1)(x − 2)(x − 3)

xdx

x^2 (x^2 − 2 x + 2)

1.7 t-method

Use t-substitution to evaluate the following integrals.

dx

sin^3 x

dx

1 + sin x

dx

sin x cos^4 x

dx

2 + sin x

1 − cos x

3 + cos x

dx

cos x + 1

sin x + cos x

dx

1.8 Miscellaneous

Evaluate the following integrals.

(ln x)^2

x

dx

x(ln x) 2 dx

xdx √ 1 − x^2

x + 4

(x + 1)^2

dx

cos 3 x

sin^2 x

dx

xdx

(1 + x^2 )^2

e 2 x dx

1 + ex

dx

x(1 + 2 ln x)

cos 2 x sin 3 xdx

sin 2x

1 + cos^2 x

dx

e

1 x

x^2

dx

sin x

cos^2 x

dx

x tan 2 xdx

cot x

1 + sin x

dx

x 3 dx

x^2 − 1

dx

e^2 x^ + ex^ − 2

ln x

x

1 + ln x

dx

9 − x^2

x^2

dx

x^2 dx

x^2 + 1

dx √ x^2 + 9

cos^3 x

sin x

dx

x^2 + 8

x^2 − 5 x + 6

dx

xdx √ x − 2

dx √ 1 + ex

cos(ln x)dx

x sin 2 xdx

dx √ ex^ − 1

4 dx

x^2

4 − x^2

x + 1

x^2 (x − 1)

dx

sec 3 x tan xdx

x 3

x^2 + 1dx

cos 2x sin 3xdx

x 4

  • x 2 − 1

x^3 + x

dx

x 3 dx √ x^2 + 4

dx

(x^2 − 1)^2

dx

1 +

x

cos

xdx

tan 4 xdx

dx √ x(x − 1)

x 2 tan − 1 xdx

sin − 1 xdx

xdx √ 1 − x

x + 1

x

dx

x

1 − xdx

Section 1.4: Trigonometric Integrals

  1. − cot x 2

+ C

1 6 sin

6 x + C

1 4 sin 2x^ −^

1 16 sin 8x^ +^ C

  1. 3 sin x 6 +^

3 5 sin^

5 x 6 +^ C

  1. sin x − 1 3 sin

3 x + C

  1. 38 x − 14 sin 2x + 321 sin 4x + C

1 3 tan

(^3) x + C

3 sec^3 x + − sec x + C

  1. −x − cot x + C

1 sin x +^

1 2 ln^

1+sin x 1 −sin x +^ C

11. −^1

2 cos^2 x + 1 2 ln(1 + cos^2 x) + C

tan^4 4 −^

tan^2 x 2 −^ ln^ |^ cos^ x|^ +^ C

  1. −8 cot 2x − 8 3 cot

3 2 x + C

1 8 cos 4x^ −^

1 12 cos 6x^ +^ C

x 4 +^

sin 2x 8 +^

sin 4x 16 +^

sin 6x 24 +^ C

cos^8 (x) 8 −^

cos^6 (x) 6 +^ C

sin^9 (x) 9 −^

2 sin^7 (x) 7 +^

sin^5 (x) 5 +^ C

1 6 cos

(^5) x sin x + 1 24 cos

(^3) x sin x + 1 16 cos^ x^ sin^ x^ +^

1 16 x^ +^ C.

Section 1.5: Trigonometric Substitution

  1. x − tan − 1 x + C
  2. √x 1 −x^2

+ C

1 − x^2 + sin − 1 x + C

√x 1+x^2

+ C

9 2 sin

− 1 x 3 −^

x 2

9 − x^2 + C

  1. ln |x +

4 + x^2 | + C

16 − x^2

x^3 4 − 2 x

+32 sin−^1

x 4

+C

√ x^2 + 4 x +^ C

√ x 4 x^2 +

√x−^1 2 x−x^2

Section 1.6: Rational Functions

  1. −x + 1 2 ln^ |

1+x 1 −x |^ +^ C

  1. 9x − 3 2 x

2

1 3 x

3 − 27 ln |3 + x| + C

  1. x + ln(1 + x^2 ) + C

1 4 ln^ |

x− 1 x+3 |^ +^ C

1 10

√ 2 ln | x−

√ 2 x+

√ 2

1 5

√ 3 tan−^1 √x 3

+ C

1 x+1 +^

1 2 ln^ |x

2 − 1 | + C

5 x− 6 x^2 − 3 x+2 + 4 ln^ |

x− 1 x− 2 |^ +^ C

  1. tan−^1 x + 5 6 ln^

x^2 + x^2 +4 +^ C

  1. 12 tan−^1 x + 14 ln (x+1)^2 x^2 +1 +^ C
  2. x 2
  • 2 ln |x + 1| + 3 ln |x − 3 | + C
  1. tan−^1 x − (^) x−^11 + ln x

(^2) + (x−1)^2 +^ C

  1. (^) 2(x^12 +1) + ln |x| − 12 ln(x^2 + 1) + C
  2. 92 ln(x−3)−4 ln(x−2)+ 12 ln(x−1)+C
  3. 14 ln

x^2 x^2 − 2 x+

− 12 tan−^1 (1 − x) + C

Section 1.7: t-method

  1. − cos^ x 2 sin^2 x

2 ln | tan x 2

| + C

  1. tan x − sec x + C
  2. (^) cos^1 x + (^) 3 cos^13 x + ln | tan x 2 | + C

√^2 3 tan − 1

2 tan(x 2 )+ √ 3

+ C

2 tan − 1

tan(x 2 ) √ 2

− x + C

2 (x + ln(sin x + cos x + 3)) − √^1 7

tan−^1

2 tan(x 2 )+ √ 7

+ C

Section 1.8: Miscellaneous

1 3 (ln^ x)

3

  • C

1 2 x

(^2) (ln x) (^2) − 1 2 x

(^2) ln x + 1 4 x

2 + C

1 − x^2 + C

  1. ln |x + 1| − 3 x+1 +^ C
  2. − 1 sin x −^ sin^ x^ +^ C
  3. − 1 2(1+x^2 ) +^ C
  4. ex^ − ln(1 + ex) + C

1 2 ln^ |1 + 2 ln^ x|^ +^ C

  1. 15 cos^5 x − 13 cos^3 x + C
  2. − ln(1 + cos 2 x) + C
  3. −e

1 x (^) + C

  1. sec x + C
  2. −x

2 2

  • x tan x + ln cos x + C
  1. − ln |1 + csc x| + C

1 2 x

2

1 2 ln^ |x

2 − 1 | + C

x

2

1 3 ln^ |e

x (^) − 1 | + C

4 3

1 + ln x + 2 3 (ln^ x)

1 + ln x + C

√ 9 −x^2 x −^ sin

− (^1) x 3 +^ C

  1. x − tan − 1 x + C
  2. ln |x +

x^2 + 9| + C

  1. ln | sin x| − 1 2 sin

2 x + C

  1. x + 17 ln |x − 3 | − 12 ln |x − 2 | + C

2 3 (x^ −^ 2)

3 (^2) + 4(x − 2)

1 (^2) + C

  1. x − 2 ln(1 +

1 + ex) + C

x 2 (cos(ln^ x) + sin(ln^ x)) +^ C

  1. 1 4 x^2 − 1 4 x sin 2x − 1 8 cos 2x + C
  2. −2 sin−^1 e−^

x (^2) + C

√ 4 −x^2 x +^ C

  1. (^1) x − 2 ln |x| + 2 ln |x − 1 | + C
  2. 13 sec^3 x + C
  3. 13 x^2 (x^2 + 1)

3 (^2) − 2 15 (x

2 + 1)^52 + C

  1. − 101 cos 5x − 12 cos x + C
  2. 12 x^2 − ln |x| + 12 ln(x^2 + 1) + C
  3. 13 (x^2 + 4)

3 (^2) − 4

x^2 + C

  1. 14 ln |x + 1| − 14 ln |x − 1 | − (^) 2(xx (^2) −1) + C

x − 2 ln(1 +

x) + C

x sin

x + 2 cos

x + C

  1. 13 tan^3 x − tan x + x + C
  2. ln |

x − 1 | − ln |

x + 1| + C

1 3 x

(^3) tan− (^1) x − 1 6 x

6 ln(x

2 + 1) + C

  1. x sin − 1 x +

1 − x^2 + C

  1. sin−^1

x −

x

1 − x + C

x + 1 + ln |

x − 1 | − ln |

x + 1| + C

  1. 14 sin−^1

x − (^14)

x

1 − x(1 − 2 x) + C