




Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Substitution,Integration By Parts,Reduction Formulas,Trigonometric Integrals,Rational Functions and Miscellaneous From The Chines University Hong Kong.
Typology: Exercises
1 / 8
This page cannot be seen from the preview
Don't miss anything!
Use a suitable substitution to evaluate the following integral.
dx √ 2 − 5 x
e 3 x
ex^ + 1
dx
x √ 1 − x^2
dx
x 2 3
1 + x^3 dx
xdx
(1 + x^2 )^2
dx √ x(1 + x)
x^2
sin
x
dx
xe −x^2 dx
(ln x) 2
x
dx
exdx
2 + ex
dx
ex^ + e−x
cos
x √ x
dx
tan xdx
dx
1 + ex
x(x 2
99 dx
x √ 25 − x^2
dx
x √ 3 x^2 + 1
dx
x^2 √ 9 − x^3
dx
x(x + 2) 99 dx
xdx √ 4 x + 5
x
x − 1 dx
(x + 2)
x − 1 dx
xdx √ x + 9
x 3 (1 + 3x 2 )
1 (^2) dx
ln xdx
x 2 ln xdx
ln x
x
dx
xe −x dx
x 2 e − 2 x dx
x cos xdx
x 2 sin 2xdx
(ln x) 2 dx
sin − 1 xdx
x tan − 1 xdx
ln(x +
1 + x^2 )dx
x sin 2 xdx
sin(ln x)dx
x sin 4xdx
x cos − 1 xdx
tan − 1 xdx
x 99 ln xdx
ln x
x^101
dx
x sec 2 xdx
e 2 x cos 3xdx
Prove the following reduction formulas.
x n e ax dx; In =
xneax
a
n
a
In− 1 , n ≥ 1
cos n xdx; In =
sin x cosn−^1 x
n
n − 1
n
In− 2 , n ≥ 2
sin n x
dx; In = −
cos x
(n − 1) sin n− 1 x
n − 2
n − 1
In− 2 , n ≥ 2
x n cos xdx; In = xn^ sin x + nxn−^1 cos x − n(n − 1)In− 2 , n ≥ 2
dx
(x^2 − a^2 )n^
; In = −
x
2 a^2 (n − 1)(x^2 − a^2 )n−^1
2 n − 3
2 a^2 (n − 1)
In− 1 , n ≥ 1
xndx √ x + a
; In =
2 xn
x + a
2 n + 1
2 an
2 n + 1
In− 1 , n ≥ 1
(ln x) n dx; In = x(ln x) n − nIn− 1 , n ≥ 1.
0
x n
1 − xdx; In =
2 n
2 n − 3
In− 1 , n ≥ 2.
Evaluate the following integrals of rational functions.
x^2 dx
1 − x^2
x^3
3 + x
dx
(1 + x)^2
1 + x^2
dx
dx
x^2 + 2x − 3
dx
(x^2 − 2)(x^2 + 3)
x^2 + 1
(x + 1)^2 (x − 1)
, dx
x 2
(x^2 − 3 x + 2)^2
, dx
x^2 + 5x + 4
x^4 + 5x^2 + 4
, dx
dx
(x + 1)(x^2 + 1)
2 x 3 − 4 x 2 − x − 3
x^2 − 2 x − 3
dx
4 − 2 x
(x^2 + 1)(x − 1)^2
dx
dx
x(x^2 + 1)^2
x^2 dx
(x − 1)(x − 2)(x − 3)
xdx
x^2 (x^2 − 2 x + 2)
Use t-substitution to evaluate the following integrals.
dx
sin^3 x
dx
1 + sin x
dx
sin x cos^4 x
dx
2 + sin x
1 − cos x
3 + cos x
dx
cos x + 1
sin x + cos x
dx
Evaluate the following integrals.
(ln x)^2
x
dx
x(ln x) 2 dx
xdx √ 1 − x^2
x + 4
(x + 1)^2
dx
cos 3 x
sin^2 x
dx
xdx
(1 + x^2 )^2
e 2 x dx
1 + ex
dx
x(1 + 2 ln x)
cos 2 x sin 3 xdx
sin 2x
1 + cos^2 x
dx
e
1 x
x^2
dx
sin x
cos^2 x
dx
x tan 2 xdx
cot x
1 + sin x
dx
x 3 dx
x^2 − 1
dx
e^2 x^ + ex^ − 2
ln x
x
1 + ln x
dx
9 − x^2
x^2
dx
x^2 dx
x^2 + 1
dx √ x^2 + 9
cos^3 x
sin x
dx
x^2 + 8
x^2 − 5 x + 6
dx
xdx √ x − 2
dx √ 1 + ex
cos(ln x)dx
x sin 2 xdx
dx √ ex^ − 1
4 dx
x^2
4 − x^2
x + 1
x^2 (x − 1)
dx
sec 3 x tan xdx
x 3
x^2 + 1dx
cos 2x sin 3xdx
x 4
x^3 + x
dx
x 3 dx √ x^2 + 4
dx
(x^2 − 1)^2
dx
1 +
x
cos
xdx
tan 4 xdx
dx √ x(x − 1)
x 2 tan − 1 xdx
sin − 1 xdx
xdx √ 1 − x
x + 1
x
dx
x
1 − xdx
Section 1.4: Trigonometric Integrals
1 6 sin
6 x + C
1 4 sin 2x^ −^
1 16 sin 8x^ +^ C
3 5 sin^
5 x 6 +^ C
3 x + C
1 3 tan
(^3) x + C
3 sec^3 x + − sec x + C
1 sin x +^
1 2 ln^
1+sin x 1 −sin x +^ C
2 cos^2 x + 1 2 ln(1 + cos^2 x) + C
tan^4 4 −^
tan^2 x 2 −^ ln^ |^ cos^ x|^ +^ C
3 2 x + C
1 8 cos 4x^ −^
1 12 cos 6x^ +^ C
x 4 +^
sin 2x 8 +^
sin 4x 16 +^
sin 6x 24 +^ C
cos^8 (x) 8 −^
cos^6 (x) 6 +^ C
sin^9 (x) 9 −^
2 sin^7 (x) 7 +^
sin^5 (x) 5 +^ C
1 6 cos
(^5) x sin x + 1 24 cos
(^3) x sin x + 1 16 cos^ x^ sin^ x^ +^
1 16 x^ +^ C.
Section 1.5: Trigonometric Substitution
1 − x^2 + sin − 1 x + C
√x 1+x^2
9 2 sin
− 1 x 3 −^
x 2
9 − x^2 + C
4 + x^2 | + C
16 − x^2
x^3 4 − 2 x
+32 sin−^1
x 4
√ x^2 + 4 x +^ C
√ x 4 x^2 +
√x−^1 2 x−x^2
Section 1.6: Rational Functions
1+x 1 −x |^ +^ C
2
1 3 x
3 − 27 ln |3 + x| + C
1 4 ln^ |
x− 1 x+3 |^ +^ C
1 10
√ 2 ln | x−
√ 2 x+
√ 2
1 5
√ 3 tan−^1 √x 3
1 x+1 +^
1 2 ln^ |x
5 x− 6 x^2 − 3 x+2 + 4 ln^ |
x− 1 x− 2 |^ +^ C
x^2 + x^2 +4 +^ C
(^2) + (x−1)^2 +^ C
x^2 x^2 − 2 x+
− 12 tan−^1 (1 − x) + C
Section 1.7: t-method
2 ln | tan x 2
√^2 3 tan − 1
2 tan(x 2 )+ √ 3
2 tan − 1
tan(x 2 ) √ 2
− x + C
2 (x + ln(sin x + cos x + 3)) − √^1 7
tan−^1
2 tan(x 2 )+ √ 7
Section 1.8: Miscellaneous
1 3 (ln^ x)
3
1 2 x
(^2) (ln x) (^2) − 1 2 x
(^2) ln x + 1 4 x
1 − x^2 + C
1 2 ln^ |1 + 2 ln^ x|^ +^ C
1 x (^) + C
2 2
1 2 x
2
1 2 ln^ |x
2 − 1 | + C
x
2
1 3 ln^ |e
x (^) − 1 | + C
4 3
1 + ln x + 2 3 (ln^ x)
1 + ln x + C
√ 9 −x^2 x −^ sin
− (^1) x 3 +^ C
x^2 + 9| + C
2 x + C
2 3 (x^ −^ 2)
3 (^2) + 4(x − 2)
1 (^2) + C
1 + ex) + C
x 2 (cos(ln^ x) + sin(ln^ x)) +^ C
x (^2) + C
√ 4 −x^2 x +^ C
3 (^2) − 2 15 (x
3 (^2) − 4
x^2 + C
x − 2 ln(1 +
x) + C
x sin
x + 2 cos
x + C
x − 1 | − ln |
x + 1| + C
1 3 x
(^3) tan− (^1) x − 1 6 x
6 ln(x
1 − x^2 + C
x −
x
1 − x + C
x + 1 + ln |
x − 1 | − ln |
x + 1| + C
x − (^14)
x
1 − x(1 − 2 x) + C