Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

explains about neural networks, Lecture notes of Artificial Intelligence

tells about graphs, neural networks

Typology: Lecture notes

2022/2023

Uploaded on 06/12/2025

hikigaya-hachiman-4
hikigaya-hachiman-4 ๐Ÿ‡ฎ๐Ÿ‡ณ

2 documents

1 / 49

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Neural Networks
Machine Learning Techniques
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31

Partial preview of the text

Download explains about neural networks and more Lecture notes Artificial Intelligence in PDF only on Docsity!

Neural Networks

Machine Learning Techniques

Network Architecture

x 1

x 2

Input Layer

Network Architecture

x 1

x 2

h 11

h 12

h 13

Input Layer

Hidden Layer-

Network Architecture

x 1

x 2

h 11

h 12

h 13

Input Layer

Hidden Layer-

Network Architecture

x 1

x 2

h 11

h 12

h 13

Input Layer

Hidden Layer-

Network Architecture

x 1

x 2

h 11

h 12

h 13

h 21

h 22

Input Layer

Hidden Layer-

Hidden Layer-

Network Architecture

x 1

x 2

h 11

h 12

h 13

h 21

h 22

y

w^113

w^121 w^122 w^123

w^111 w^112

Input Layer

Hidden Layer-

Hidden Layer-

Output Layer

Network Architecture

x 1

x 2

h 11

h 12

h 13

h 21

h 22

y

w^113

w^121 w^122 w^123

b^11

b^12

b^13

w^111 w^112

Input Layer

Hidden Layer-

Hidden Layer-

Output Layer

-2 -1 0 1 2

1

Network Architecture

x 1

x 2

h 11

h 12

h 13

h 21

h 22

y

w^211

w^212

w^113

w^121 w^122 w^123

w^221

w^222

w^231

w^232

w 113

w^321

b^11

b^12

b^13

b^21

b^22

w^111 w^112 b 3 1

ReLU( ) z = max(0, z) ๐œŽ^ ( )z^ =

1 + e-z

g z( )

z

Activation Functions

Input Layer

Hidden Layer-

Hidden Layer-

Output Layer

Forward Pass

x 1

x 2

h 11

h 12

h 13

h 21

h 22

3 y

2

5

Forward Pass

x 1

x 2

h 11

h 12

h 13

h 21

h 22

3 y

2

5

h 11 = g ( 5 x 1 + 3x 2 + 2)

h 11 = max( 5 x 1 + 3x 2 + 2, 0)

ReLU

Forward Pass

x 1

x 2

h 11

h 12

h 13

h 21

h 22

3 y

2

5

h 11 = g ( 5 x 1 + 3x 2 + 2)

h 11 = max( 5 x 1 + 3x 2 + 2, 0)

h 11 = ๐œŽ 5( x 1 + 3x 2 + 2)

ReLU

Sigmoid

Forward Pass

x 1

x 2

h 11

h 12

h 13

h 21

h 22

y

  • 1

3

2

y = g ( 2 h 21 - h 22 + 3)

Forward Pass

x 1

x 2

h 11

h 12

h 13

h 21

h 22

y

  • 1

3

2

y = 2h 21 - h 22 + 3 y^ =^ g^ (^2 h^21 - h^22 + 3)

Linear