




























































































Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
An introduction to optical fiber communication, including its history, advantages, and signal distortion. Topics covered include the development of optical fibers, their properties, and the use of optical fiber in various industries. The document also discusses signal distortion in optical fibers and how to calculate fiber attenuation and the cut-off frequency.
What you will learn
Typology: Study Guides, Projects, Research
1 / 179
This page cannot be seen from the preview
Don't miss anything!
Recognized under 2(f) and 12 (B) of UGC ACT 1956 (Affiliated to JNTUH, Hyderabad, Approved by AICTE-Accredited by NBA & NAAC–‘A’Grade-ISO 9001: Certified) Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad–500100, Telangana State, India
UNIT I
Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of light through an optical fiber. The light forms an electromagnetic carrier wave that is modulated to carry information.[1]^ Fiber is preferred over electrical cabling when high bandwidth, long distance, or immunity to electromagnetic interference are required. This type of communication can transmit voice, video, and telemetry through local area networks, computer networks, or across long distances. Optical fiber is used by many telecommunications companies to transmit telephone signals, Internet communication, and cable television signals. Researchers at Bell Labs have reached internet speeds of over 100 peta bit ×kilometer per second using fiber-optic communication. The process of communicating using fiber-optics involves the following basic steps:
First developed in the 1970s, fiber-optics have revolutionized the telecommunications industry and have played a major role in the advent of the Information Age. Because of its advantages over electrical transmission, optical fibers have largely replaced copper wire communications in core networks in the developed world.
In 1880 Alexander Graham Bell and his assistant Charles Sumner Tainter created a very early precursor to fiber-optic communications, the Photophone, at Bell's newly established Volta Laboratory in Washington, D.C. Bell considered it his most important invention. The device allowed for the transmission of sound on a beam of light. On June 3, 1880, Bell conducted the world's first wireless telephone transmission between two buildings, some 213 meters apart.[4][5]^ Due to its use of an atmospheric transmission medium, the Photophone would not prove practical until advances in laser and optical fiber technologies permitted the secure transport of light. The Photophone's first practical use came in military communication systems many decades later. In 1954 Harold Hopkins and Narinder Singh Kapany showed that rolled fiber glass allowed light to be transmitted. Initially it was considered that the light can traverse in only straight medium. Jun-ichi Nishizawa, a Japanese scientist at Tohoku University, proposed the use of optical fibers for communications in 1963. Nishizawa invented the PIN diode and the static induction transistor, both of which contributed to the development of optical fiber communications. In 1966 Charles K. Kao and George Hockham at STC Laboratories (STL) showed that the losses of 1,000 dB/km in existing glass (compared to 5– 10 dB/km in coaxial cable) were due to contaminants which could potentially be removed. Optical fiber was successfully developed in 1970 by Corning Glass Works, with attenuation low enough for communication purposes (about 20 dB/km) and at the same time GaAs semiconductor lasers were developed that were compact and therefore suitable for transmitting light through fiber optic cables for long distances. In 1973, Optelecom, Inc., co-founded by the inventor of the laser, Gordon Gould, received a contract from APA for the first optical communication systems. Developed for Army Missile Command in Huntsville, Alabama, it was a laser on the ground and a spout of optical fiber played out by missile to transmit a modulated signal over five kilometers.
These developments eventually allowed third-generation systems to operate commercially at 2.5 Gbit/s with repeater spacing in excess of 100 km (62 mi). The fourth generation of fiber-optic communication systems used optical amplification to reduce the need for repeaters and wavelength-division multiplexing to increase data capacity. These two improvements caused a revolution that resulted in the doubling of system capacity every six months starting in 1992 until a bit rate of 10 Tb/s was reached by 2001. In 2006 a bit-rate of 14 Tbit/s was reached over a single 160 km (99 mi) line using optical amplifiers. The focus of development for the fifth generation of fiber-optic communications is on extending the wavelength range over which a WDM system can operate. The conventional wavelength window, known as the C band, covers the wavelength range 1.53–1.57 μm, and dry fiber has a low-loss window promising an extension of that range to 1.30–1.65 μm. Other developments include the concept of "optical solutions", pulses that preserve their shape by counteracting the effects of dispersion with the nonlinear effects of the fiber by using pulses of a specific shape. In the late 1990s through 2000, industry promoters, and research companies such as KMI, and RHK predicted massive increases in demand for communications bandwidth due to increased use of the Internet, and commercialization of various bandwidth-intensive consumer services, such as video on demand. Internet protocol data traffic was increasing exponentially, at a faster rate than integrated circuit complexity had increased under Moore's Law. From the bust of the dot-com bubble through 2006, however, the main trend in the industry has been consolidation of firms and offshoring of manufacturing to reduce costs. Companies such as Verizon and AT&T have taken advantage of fiber-optic communications to deliver a variety of high-throughput data and broadband services to consumers' homes. Advantages of Fiber Optic Transmission Optical fibers have largely replaced copper wire communications in core networks in the developed world, because of its advantages over electrical transmission. Here are the main advantages of fiber optic transmission.
Extremely High Bandwidth: No other cable-based data transmission medium offers the bandwidth that fiber does. The volume of data that fiber optic cables transmit per unit time is far great than copper cables. Longer Distance: in fiber optic transmission, optical cables are capable of providing low power loss, which enables signals can be transmitted to a longer distance than copper cables. Resistance to Electromagnetic Interference: in practical cable deployment, it’s inevitable to meet environments like power substations, heating, ventilating and other industrial sources of interference. However, fiber has a very low rate of bit error (10 EXP-13), as a result of fiber being so resistant to electromagnetic interference. Fiber optic transmission is virtually noise free. Low Security Risk: the growth of the fiber optic communication market is mainly driven by increasing awareness about data security concerns and use of the alternative raw material. Data or signals are transmitted via light in fiber optic transmission. Therefore there is no way to detect the data being transmitted by "listening in" to the electromagnetic energy "leaking" through the cable, which ensures the absolute security of information. Small Size: fiber optic cable has a very small diameter. For instance, the cable diameter of a single OM3 multimode fiber is about 2mm, which is smaller than that of coaxial copper cable. Small size saves more space in fiber optic transmission. Light Weight: fiber optic cables are made of glass or plastic, and they are thinner than copper cables. These make them lighter and easy to install. Easy to Accommodate Increasing Bandwidth: with the use of fiber optic cable, new equipment can be added to existing cable infrastructure. Because optical cable can provide vastly expanded capacity over the originally laid cable. And WDM (wavelength division multiplexing) technology, including CWDM and DWDM, enables fiber cables the ability to accommodate more bandwidth.
Fig 1: Block Diagram of Optical Fiber Communication System Message origin: Generally message origin is from a transducer that converts a non-electrical message into an electrical signal. Common examples include microphones for converting sound waves into currents and video (TV) cameras for converting images into current. For data transfer between computers, the message is already in electrical form. Modulator: The modulator has two main functions.
. Carrier source generates the wave on which the information is transmitted. This wave is called the carrier. For fiber optic system, a laser diode (LD) or a light emitting diode (LED) is used. They can be called as optic oscillators, they provide stable, single frequency waves with sufficient power for long distance propagation.
. Signal processing includes filtering, amplification. Proper filtering maximizes the ratio of signal to unwanted power. For a digital syst5em decision circuit is an additional block. The bit error rate (BER) should be very small for quality communications. Signal processing: . Signal processing includes filtering, amplification. Proper filtering maximizes the ratio of signal to unwanted power. For a digital syst5em decision circuit is an additional block. The bit error rate (BER) should be very small for quality communications. Message output: . The electrical form of the message emerging from the signal processor is transformed into a sound wave or visual image. Sometimes these signals are directly usable when computers or other machines are connected through a fiber system. Electromagnetic Spectrum The radio waves and light are electromagnetic waves. The rate at which they alternate in polarity is called their frequency (f) measured in hertz (Hz). The speed of electromagnetic wave (c) in free space is approximately 3 x 108 m/sec. The distance travelled during each cycle is called as wavelength (λ) In fiber optics, it is more convenient to use the wavelength of light instead of the frequency with light frequencies; wavelength is often stated in microns or nanometers. 1 micron (μ) = 1 Micrometre (1 x 10-6) 1 nano (n) = 10-9 meter Fiber optics uses visible and infrared light. Infrared light covers a fairly wide range of wavelengths and is generally used for all fiber optic communications. Visible light is normally used for very short range transmission using a plastic fiber.
Fig 2: Electromagnetic Spectrum Optical Fiber Waveguides In free space light ravels as its maximum possible speed i.e. 3 x 108 m/s or 186 x 103 miles/sec. When light travels through a material it exhibits certain behavior explained by laws of reflection, refraction. An optical wave guide is a structure that "guides" a light wave by constraining it to travel along a certain desired path. If the transverse dimensions of the guide are much larger than the wavelength of the guided light, then we can explain how the optical waveguide works using geometrical optics and total internal reflection. A wave guide traps light by surrounding a guiding region, called the core, made from a material with index of refraction ncore, with a material called the cladding, made from a material with index of refraction ncladding <ncore. Light entering is trapped as long as sinθ > ncladding/nncore.
Solution: If a ray propagating along the axis of the fiber travels a distance d, then a ray incident at the critical angle θc travels a distance L = d/sinθc. The respective travel times are td = dncore/c and tL = dncore/(sinθc c). sinθc = ncladding/ncore. θc = 81.9 deg. For d = 1000 m we have td = 5000 ns and tL =5050.51 ns. The difference in travel time is therefore 50.51 ns/km.
The phenomenon of splitting of white light into its constituents is known as dispersion. The concepts of reflection and refraction of light are based on a theory known as Ray theory or geometric optics, where light waves are considered as waves and represented with simple geometric lines or rays. The basic laws of ray theory/geometric optics