Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Finding the Vertex of Quadratic Functions, Study notes of Computer Graphics

Instructions on how to find the vertex of quadratic functions, which is a crucial point on the parabola that helps in graphing the function. both standard form and vertex form of quadratic equations and provides examples to illustrate the concepts.

Typology: Study notes

2021/2022

Uploaded on 09/12/2022

ubimaiorminorcessat
ubimaiorminorcessat ๐Ÿ‡บ๐Ÿ‡ธ

4.4

(17)

225 documents

1 / 23

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Finding the
Vertex
Date:
Standards
F.IF. 7a Graph quadratic functions
F.BF. 3 Identify effects on the graph
by replacing f(x) with f(x) +k, kf(x),
f(x+k)
Essential Questions
โ€ขWhy do we want to find the vertex to graph?
โ€ขHow do I find the vertex when a quadratic is written in Standard
form?
โ€ขHow do I find the vertex when a quadratic is written in vertex form?
โ€ขHow do I graph using the vertex?
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17

Partial preview of the text

Download Finding the Vertex of Quadratic Functions and more Study notes Computer Graphics in PDF only on Docsity!

Finding the

Vertex

Date:

Standards F.IF. 7a Graph quadratic functions

F.BF. 3 Identify effects on the graph by replacing f(x) with f(x) +k, kf(x), f(x+k)

Essential Questions

  • Why do we want to find the vertex to graph?
  • How do I find the vertex when a quadratic is written in Standard form?
  • How do I find the vertex when a quadratic is written in vertex form?
  • How do I graph using the vertex?

Why do we want to find the vertex to graph?

Where is the

vertex

located on

the

parabola?

If we know the vertex, we can pick

two points on either side to graph

the parabola

In the

middle!!

Standard Form Breakdown

How do I find the vertex when a quadratic is written in Standard form?

๐’š = ๐’‚๐’™๐Ÿ^ + ๐’ƒ๐’™ + ๐’„

What is standard form?

๐’š = ๐’™๐Ÿ^ + ๐Ÿ๐’™ + ๐Ÿ‘

๐’š = โˆ’๐’™๐Ÿ^ + ๐Ÿ‘๐’™ โˆ’ ๐Ÿ’

๐’š = ๐’™๐Ÿ^ + ๐Ÿ“

๐’š =

๐Ÿ ๐Ÿ’ ๐’™

๐Ÿ (^) + ๐Ÿ๐’™ + ๐Ÿ

๐’š = โˆ’๐’™๐Ÿ^ + ๐Ÿ”๐’™

๐’‚ = ๐Ÿ, ๐’ƒ = ๐Ÿ, ๐’„ = ๐Ÿ‘

๐’‚ = โˆ’๐Ÿ, ๐’ƒ = ๐Ÿ‘, ๐’„ = โˆ’๐Ÿ’

๐’‚ = ๐Ÿ ๐’ƒ = ๐ŸŽ, ๐’„ = ๐Ÿ“

๐’‚ =

๐Ÿ ๐Ÿ’ , ๐’ƒ = ๐Ÿ, ๐’„ = ๐Ÿ ๐’‚ = โˆ’๐Ÿ, ๐’ƒ = ๐Ÿ”, ๐’„ = ๐ŸŽ

How do I find the vertex when a quadratic is written in Vertex form?

What is Vertex form?

Vertex

(h, k)

๐’š = ๐’‚ ๐’™ โˆ’ ๐’‰ ๐Ÿ^ + ๐’Œ

How do I graph

using the vertex? ๐’š = ๐’™

a=

b=

c=

๐’š = ๐’™๐Ÿ^ + ๐Ÿ๐’™ + ๐Ÿ‘

Vertex @ (-1, 2)

How do I graph using the vertex?

X y

  • 1 2

๐’š = ๐’™๐Ÿ^ + ๐Ÿ๐’™ + ๐Ÿ‘

๐’š = ๐’™๐Ÿ^ + ๐Ÿ๐’™ + ๐Ÿ‘

1

6

6

How do I graph

using the vertex? ๐’š = ๐’™

a=

b=

c=

๐’š = ๐’™๐Ÿ^ + ๐Ÿ๐’™ + ๐Ÿ‘

Vertex @ (0, 3)

How do I graph using the vertex?

X y

0 3

๐’š = ๐’™๐Ÿ^ + ๐Ÿ’

๐’š = ๐’™๐Ÿ^ + ๐Ÿ’

2

8

8

How do I graph using the vertex? ๐’š = โˆ’๐Ÿ‘๐’™

๐Ÿ

  • ๐Ÿ”๐’™ + ๐Ÿ“

a= b= c=

- 6 5

= โˆ’^

๐’š = โˆ’๐Ÿ‘๐’™๐Ÿ^ + ๐Ÿ”๐’™ + ๐Ÿ“

๐’š = โˆ’๐Ÿ‘(๐Ÿ)๐Ÿ^ + ๐Ÿ”(๐Ÿ) + ๐Ÿ“

๐’š = โˆ’๐Ÿ‘ โˆ™ ๐Ÿ + ๐Ÿ” + ๐Ÿ“

๐’š = โˆ’๐Ÿ‘ + ๐Ÿ” + ๐Ÿ“

Vertex @ (1, 8)

๐’š = ๐Ÿ–

How do I graph using the vertex?

X y

1 14

๐’š = โˆ’๐Ÿ‘๐’™๐Ÿ^ + ๐Ÿ”๐’™ + ๐Ÿ“
๐’š = โˆ’๐Ÿ‘(โˆ’๐Ÿ)๐Ÿ^ + ๐Ÿ”(โˆ’๐Ÿ) + ๐Ÿ“
๐’š = โˆ’๐Ÿ‘๐’™๐Ÿ^ + ๐Ÿ”๐’™ + ๐Ÿ“
๐’š = โˆ’๐Ÿ‘(๐Ÿ‘)๐Ÿ^ + ๐Ÿ”(๐Ÿ‘) + ๐Ÿ“

3

How do I graph using the vertex? ๐’š = (๐’™ + ๐Ÿ‘)

๐Ÿ โˆ’๐Ÿ’

a= h= k=

1

- -

Vertex @

X y

  • 3 4

0

0 ๐’š = (๐’™ + ๐Ÿ‘)๐Ÿโˆ’๐Ÿ’ ๐’š = (โˆ’๐Ÿ + ๐Ÿ‘)๐Ÿโˆ’๐Ÿ’ ๐’š = (๐Ÿ)๐Ÿโˆ’๐Ÿ’ ๐’š = ๐Ÿ’ โˆ’ ๐Ÿ’ ๐’š = ๐ŸŽ

How do I graph using the vertex?

How do I graph using the vertex?

How do I graph using the vertex?

a= h= k=

**-

5**

Vertex @

X y

  • 2 5

0

๐’š = โˆ’๐Ÿ’(๐’™ + ๐Ÿ)ยฒ + ๐Ÿ“ ๐’š = โˆ’๐Ÿ’(โˆ’๐Ÿ’ + ๐Ÿ)ยฒ + ๐Ÿ“ ๐’š = โˆ’๐Ÿ’(โˆ’๐Ÿ)ยฒ + ๐Ÿ“ ๐’š = โˆ’๐Ÿ’(๐Ÿ’) + ๐Ÿ“ ๐’š = โˆ’๐Ÿ๐Ÿ” + ๐Ÿ“ ๐’š = โˆ’๐Ÿ๐Ÿ

๐’š = โˆ’๐Ÿ’(๐’™ + ๐Ÿ)ยฒ + ๐Ÿ“ ๐’š = โˆ’๐Ÿ’(๐ŸŽ + ๐Ÿ)ยฒ + ๐Ÿ“ ๐’š = โˆ’๐Ÿ’(๐Ÿ)ยฒ + ๐Ÿ“ ๐’š = โˆ’๐Ÿ’(๐Ÿ’) + ๐Ÿ“ ๐’š = โˆ’๐Ÿ๐Ÿ” + ๐Ÿ“ ๐’š = โˆ’๐Ÿ๐Ÿ