Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

finite difference Method, Cheat Sheet of Calculus

Finite Difference Method is integration.

Typology: Cheat Sheet

2023/2024

Uploaded on 01/30/2024

amber-fisher
amber-fisher 🇺🇸

1 document

1 / 3

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
*You must show sufficient detail to support your work to earn credit for your calculations.
This can be hand-written work, typed calculations, or excel formulas. To avoid round-off error,
retain at least six decimal places in all of your calculations. Complete
all trigonometric calculations in radians.
Assume the function f is defined as
f
(
x , y
)
=2 sin xtan y
Use differentiation rules to find the exact partial derivatives
f
x f
y
evaluate those exact partial derivatives at (-3.1 , 1.56) .
Use the finite difference formulas to estimate and at .
f
x f
y at (−3.1 ,1.56)
Use your calculated values to fill in this table:
Estimated partial derivatives using finite difference formulas:
h
finite difference approx. to
f
x
Exact
f
x
finite difference approx. to
f
y
Exact
f
y
0.01 -18526.1 -134838.6
0.001 -1854243 -194696.3
0.0001 -18542412 -1861069.7
1. h= 0.01
f
x =
(
xi, yi
)
f
(
xi, yi
)
f
(
xi, yi
)
(
3.1 ,1.56
)
f
(
3.1+h , 1.56
)
f(−3.1 ,1.56)
h
(
3.1 ,1.56
)
f
(
3.1+0.01 ,1.56
)
f(−3.1 ,1.56)
0.01
(
3.1 ,1.56
)
f
(
3.09 ,1.56
)
f(−3.1 ,1.56)
0.01
(
3.1 ,1.56
)
2sin
(
3.09
)
tan
(
1.56
)
2 sin
(
3.1
)
tan
(
1.56
)
0.01
f
x
(
3.1,1.56
)
185 26.1
pf3

Partial preview of the text

Download finite difference Method and more Cheat Sheet Calculus in PDF only on Docsity!

*You must show sufficient detail to support your work to earn credit for your calculations.

This can be hand-written work, typed calculations, or excel formulas. To avoid round-off error,

retain at least six decimal places in all of your calculations. Complete

all trigonometric calculations in radians.

 Assume the function f is defined as

f ( x , y )= 2 sin x tan y

 Use differentiation rules to find the exact partial derivatives

∂ f

∂ x

∧∂ f

∂ y

evaluate those exact partial derivatives at (- 3.1 , 1.56 ).

 Use the finite difference formulas to estimate and at.

∂ f

∂ x

∧∂ f

∂ y

at (−3.1 ,1.56)

 Use your calculated values to fill in this table:

Estimated partial derivatives using finite difference formulas:

h

finite difference approx. to

∂ f

∂ x

Exact

∂ f

∂ x

finite difference approx. to

∂ f

∂ y

Exact

∂ f

∂ y

1. h= 0.

∂ f

∂ x

∂ f

∂ x

x

i

, y

i

f

x

i

, y

i

−f

x

i

, y

i

f (−3.1+h , 1.56)−f (−3.1 , 1.56)

h

f (−3.1+0.01 , 1.56)−f (−3.1 , 1.56)

f (−3.09 , 1.56)−f (−3.1 , 1.56)

2 sin (−3.09 )−tan ( 1.56) − 2 sin(−3.1)−tan ( 1.56 )

∂ f

∂ x

2. h= 0.

∂ f

∂ y

∂ f

∂ x

x

i

, y

i

f

x

i

, y

i

−f

x

i

, y

i

f (−3.1+h , 1.56)−f (−3.1 , 1.56)

h

f (−3.1 ,1.56 +0.01)−f (−3.1 , 1.56)

f (−3.1 ,1.57 )−f (−3.1 , 1.56)

2 sin (−3.1) −tan ( 1.57) − 2 sin (−3.1 )−tan ( 1.56)

∂ f

∂ x

3. h= 0.

∂ f

∂ x

∂ f

∂ x

x

i

, y

i

f

x

i

, y

i

−f

x

i

, y

i

f (−3.1+h , 1.56)−f (−3.1 , 1.56)

h

f (−3.1+0.0 0 1 ,1.56 )−f (−3.1 ,1.56)

f (−3.099 , 1.56)−f (−3.1 , 1.56)

2 sin (−3.09 9 )−tan ( 1.56 )− 2 sin(−3.1)−tan ( 1.56 )

∂ f

∂ x

4. h= 0.

∂ f

∂ y

∂ f

∂ x

x

i

, y

i

f

x

i

, y

i

−f

x

i

, y

i

f (−3.1+h , 1.56)−f (−3.1 , 1.56)

h

f (−3.1 ,1.56 +0.0 0 1 )−f (−3.1 ,1.56)

f (−3.1 ,1.5 61 ) −f (−3.1, 1.56)

2 sin (−3.1) −tan ( 1.5 61 )− 2 sin (−3.1)−tan ( 1.56)

∂ f

∂ x