

Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Finite Difference Method is integration.
Typology: Cheat Sheet
1 / 3
This page cannot be seen from the preview
Don't miss anything!
*You must show sufficient detail to support your work to earn credit for your calculations.
This can be hand-written work, typed calculations, or excel formulas. To avoid round-off error,
retain at least six decimal places in all of your calculations. Complete
all trigonometric calculations in radians.
Assume the function f is defined as
f ( x , y )= 2 sin x tan y
Use differentiation rules to find the exact partial derivatives
∂ f
∂ x
∧∂ f
∂ y
evaluate those exact partial derivatives at (- 3.1 , 1.56 ).
Use the finite difference formulas to estimate and at.
∂ f
∂ x
∧∂ f
∂ y
at (−3.1 ,1.56)
Use your calculated values to fill in this table:
Estimated partial derivatives using finite difference formulas:
h
finite difference approx. to
∂ f
∂ x
Exact
∂ f
∂ x
finite difference approx. to
∂ f
∂ y
Exact
∂ f
∂ y
∂ f
∂ x
∂ f
∂ x
x
i
, y
i
≅ f
x
i
, y
i
−f
x
i
, y
i
f (−3.1+h , 1.56)−f (−3.1 , 1.56)
h
f (−3.1+0.01 , 1.56)−f (−3.1 , 1.56)
f (−3.09 , 1.56)−f (−3.1 , 1.56)
2 sin (−3.09 )−tan ( 1.56) − 2 sin(−3.1)−tan ( 1.56 )
∂ f
∂ x
∂ f
∂ y
∂ f
∂ x
x
i
, y
i
≅ f
x
i
, y
i
−f
x
i
, y
i
f (−3.1+h , 1.56)−f (−3.1 , 1.56)
h
f (−3.1 ,1.56 +0.01)−f (−3.1 , 1.56)
f (−3.1 ,1.57 )−f (−3.1 , 1.56)
2 sin (−3.1) −tan ( 1.57) − 2 sin (−3.1 )−tan ( 1.56)
∂ f
∂ x
∂ f
∂ x
∂ f
∂ x
x
i
, y
i
≅ f
x
i
, y
i
−f
x
i
, y
i
f (−3.1+h , 1.56)−f (−3.1 , 1.56)
h
f (−3.1+0.0 0 1 ,1.56 )−f (−3.1 ,1.56)
f (−3.099 , 1.56)−f (−3.1 , 1.56)
2 sin (−3.09 9 )−tan ( 1.56 )− 2 sin(−3.1)−tan ( 1.56 )
∂ f
∂ x
∂ f
∂ y
∂ f
∂ x
x
i
, y
i
≅ f
x
i
, y
i
−f
x
i
, y
i
f (−3.1+h , 1.56)−f (−3.1 , 1.56)
h
f (−3.1 ,1.56 +0.0 0 1 )−f (−3.1 ,1.56)
f (−3.1 ,1.5 61 ) −f (−3.1, 1.56)
2 sin (−3.1) −tan ( 1.5 61 )− 2 sin (−3.1)−tan ( 1.56)
∂ f
∂ x