



Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Formula sheet in Strain rates tensor, vorticity tensor, the material derivative, the balance equation of linear momentum and internal energy, dynamic viscosity and complex function.
Typology: Cheat Sheet
1 / 5
This page cannot be seen from the preview
Don't miss anything!
◮The ǫ − δ identity reads
ǫinmǫmjk = ǫminǫmjk = ǫnmiǫmjk = δij δnk − δik δnj ◮Strain rate tensor, vorticity tensor
∂vi ∂xj
∂vi ∂xj
∂vi ∂xj 2 ∂vi /∂xj
∂vj ∂xi
∂vj ∂xi =
∂vi ∂xj
∂vj ∂xi
∂vi ∂xj
∂vj ∂xi
= Sij + Ωij
◮The vorticity vector is computed as
ω = ∇ × v
ωi = ǫijk
∂vk ∂xj
◮The material derivative
ρ
dΨ dt
= ρ
∂t
∂xj
where Ψ = vi, u, T, k, v i′v j′...
◮The balance equation for mass dρ dt
∂vi ∂xi
◮The balance equation for linear momentum
ρ
dvi dt
∂σji ∂xj
◮The balance equation for internal energy
ρ
du dt
= σji
∂vi ∂xj
∂qi ∂xi ◮The equation for kinetic energy reads
ρ
dk dt
∂viσji ∂xj
− σji
∂vi ∂xj
◮The constitutive law for Newtonian viscous fluids
σij = −pδij + 2μSij −
μSkkδij , σij = −pδij + τij
qi = −k
∂xi ◮Viscosity
μ: dynamic viscosity
ν: kinematic viscosity (ν = μ/ρ)
◮The continuity equation and the Navier-Stokes equation for incompressible flow with constant viscosity read (conservative form, p denotes the hydrostatic pressure, i.e. p = 0 if vi = 0)
∂vi ∂xi
ρ
∂vi ∂t
∂vivj ∂xj
∂p ∂xi
∂^2 vi ∂xj ∂xj
◮The Navier-Stokes equation for incompressible flow with constant viscosity read (non-conservative form)
ρ
∂vi ∂t
∂vi ∂xj
∂p ∂xi
∂^2 vi ∂xj ∂xj
The viscous stress tensor then reads
τij = 2μSij = μ
∂vi ∂xj
∂vj ∂xi
◮The equation for internal energy reads
ρ du dt
= −p ∂vi ∂xi
μSkkSii Φ
∂xi
k
∂xi
◮Streamfunction, Ψ; potential, Φ
v 1 =
∂x 2 , v 2 = −
∂x 1
vk =
∂xk ◮The Rayleigh problem
η =
x 2 2
νt
, f =
v 1 V 0
d^2 f dη^2
◮Blasius solution
ξ =
νx 1
x 2 , Ψ = (νV 1 ,∞x 1 )^1 /^2 g
1 2 gg′′^ + g′′′^ = 0
◮The Navier-Stokes (different form of the convective term)
∂vi ∂t
∂k ∂xi
− εijk vj ωk = −
ρ
∂xi
ν ∂^2 vi ∂xj ∂xj
fi
The linear law: ¯v 1 uτ
uτ x 2 ν
or ¯v+ 1 = x+ 2
The log-law:
¯v 1 uτ
κ
ln
( (^) x 2 uτ ν
κ
ln
x+ 2
◮The exact k equation reads
∂v¯j k ∂xj
= −v′ iv j′
∂v¯i ∂xj
∂xj
ρ
v′ j p′^ +
v j′ v i′v′ i − ν
∂k ∂xj
− ν
∂v′ i ∂xj
∂v′ i ∂xj
◮The exact K equation reads
∂¯vj K ∂xj
= ν
∂xj ∂xj
ρ
∂v¯i ¯p ∂xi
− ν
∂v¯i ∂xj
∂¯vi ∂xj
−
∂v¯iv′ iv j′ ∂xj
∂¯vi ∂xj
◮The modelled k and ε equations
∂k ∂t
∂k ∂xj
= νt
∂¯vi ∂xj
∂v¯j ∂xi
∂¯vi ∂xj
νt σθ
∂ θ¯ ∂xi
−ε +
∂xj
ν +
νt σk
∂k ∂xj
∂ε ∂t
∂ε ∂xj
ε k
cε 1 νt
∂v¯i ∂xj
∂¯vj ∂xi
∂¯vi ∂xj
ε k
νt σθ
∂ ¯θ ∂xi
− cε 2
ε^2 k
∂xj
ν +
νt σε
∂ε ∂xj
νt = Cμ
k^2 ε ◮Wall functions
uτ =
κ¯v 1 ,P ln(Euτ δx 2 /ν) kP = C− μ 1 /^2 u^2 τ , Cμ = 0. 09
εP = P k^ =
u^3 τ κδx 2 ◮Low-Reynolds number model: different wall boundary conditions for ε:
εwall = ν
∂^2 k ∂x^22
εwall = 2ν
k ∂x 2
εwall =
2 νk x^22
◮In the Boussinesq assumption an eddy (i.e. a turbulent) viscosity is in- troduced to model the unknown Reynolds stresses in Eq. 1. The stresses are
modelled as
v′ iv′ j = −νt
∂v¯i ∂xj
∂¯vj ∂xi
δij k = − 2 νt s¯ij +
δij k
Trick 1:
Ai ∂Bj ∂xk
∂AiBj ∂xk − Bj
∂Ai ∂xk
Trick 2:
Ai ∂Ai ∂xj
∂AiAi ∂xj