Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Fluid mechanics formula sheet, Cheat Sheet of Fluid Mechanics

Formula sheet in Strain rates tensor, vorticity tensor, the material derivative, the balance equation of linear momentum and internal energy, dynamic viscosity and complex function.

Typology: Cheat Sheet

2021/2022

Uploaded on 02/07/2022

mjforever
mjforever 🇺🇸

4.8

(25)

258 documents

1 / 5

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
31446 Mechanics of fluids: Formula sheet to be used at
written examinations
The ǫδidentity reads
ǫinmǫmjk =ǫmin ǫmjk =ǫnmiǫmj k =δijδnk δik δnj
Strain rate tensor, vorticity tensor
∂vi
∂xj
=1
2
∂vi
∂xj
+∂vi
∂xj
2∂vi/∂xj
+∂vj
∂xivj
∂xi
=0
=1
2∂vi
∂xj
+∂vj
∂xi+1
2∂vi
∂xjvj
∂xi=Sij + ij
The vorticity vector is computed as
ω=×v
ωi=ǫijk
∂vk
∂xj
The material derivative
ρdΨ
dt =ρΨ
∂t +ρvj
Ψ
∂xj
where Ψ = vi, u, T , k, v
iv
j...
The balance equation for mass
dt +ρ∂vi
∂xi
= 0
The balance equation for linear momentum
ρdvi
dt =∂σji
∂xj
+ρfi
The balance equation for internal energy
ρdu
dt =σji
∂vi
∂xjqi
∂xi
The equation for kinetic energy reads
ρdk
dt =∂viσji
∂xjσji
∂vi
∂xj
+ρvifi
The constitutive law for Newtonian viscous fluids
σij =ij + 2µSij 2
3µSkkδij , σij =ij +τij
qi=k∂T
∂xi
Viscosity
1
pf3
pf4
pf5

Partial preview of the text

Download Fluid mechanics formula sheet and more Cheat Sheet Fluid Mechanics in PDF only on Docsity!

31446 Mechanics of fluids: Formula sheet to be used at

written examinations

◮The ǫ − δ identity reads

ǫinmǫmjk = ǫminǫmjk = ǫnmiǫmjk = δij δnk − δik δnj ◮Strain rate tensor, vorticity tensor

∂vi ∂xj

∂vi ∂xj

∂vi ∂xj 2 ∂vi /∂xj

∂vj ∂xi

∂vj ∂xi =

∂vi ∂xj

∂vj ∂xi

∂vi ∂xj

∂vj ∂xi

= Sij + Ωij

◮The vorticity vector is computed as

ω = ∇ × v

ωi = ǫijk

∂vk ∂xj

◮The material derivative

ρ

dΨ dt

= ρ

∂t

  • ρvj

∂xj

where Ψ = vi, u, T, k, v i′v j′...

◮The balance equation for mass dρ dt

  • ρ

∂vi ∂xi

◮The balance equation for linear momentum

ρ

dvi dt

∂σji ∂xj

  • ρfi

◮The balance equation for internal energy

ρ

du dt

= σji

∂vi ∂xj

∂qi ∂xi ◮The equation for kinetic energy reads

ρ

dk dt

∂viσji ∂xj

− σji

∂vi ∂xj

  • ρvifi

◮The constitutive law for Newtonian viscous fluids

σij = −pδij + 2μSij −

μSkkδij , σij = −pδij + τij

qi = −k

∂T

∂xi ◮Viscosity

μ: dynamic viscosity

ν: kinematic viscosity (ν = μ/ρ)

◮The continuity equation and the Navier-Stokes equation for incompressible flow with constant viscosity read (conservative form, p denotes the hydrostatic pressure, i.e. p = 0 if vi = 0)

∂vi ∂xi

ρ

∂vi ∂t

  • ρ

∂vivj ∂xj

∂p ∂xi

  • μ

∂^2 vi ∂xj ∂xj

◮The Navier-Stokes equation for incompressible flow with constant viscosity read (non-conservative form)

ρ

∂vi ∂t

  • ρvj

∂vi ∂xj

∂p ∂xi

  • μ

∂^2 vi ∂xj ∂xj

The viscous stress tensor then reads

τij = 2μSij = μ

∂vi ∂xj

∂vj ∂xi

◮The equation for internal energy reads

ρ du dt

= −p ∂vi ∂xi

  • 2μSij Sij −

μSkkSii Φ

∂xi

k

∂T

∂xi

◮Streamfunction, Ψ; potential, Φ

v 1 =

∂x 2 , v 2 = −

∂x 1

vk =

∂xk ◮The Rayleigh problem

η =

x 2 2

νt

, f =

v 1 V 0

d^2 f dη^2

  • 2η df dη

◮Blasius solution

ξ =

V 1 ,∞

νx 1

x 2 , Ψ = (νV 1 ,∞x 1 )^1 /^2 g

1 2 gg′′^ + g′′′^ = 0

◮The Navier-Stokes (different form of the convective term)

∂vi ∂t

∂k ∂xi

− εijk vj ωk = −

ρ

∂P

∂xi

  • ν ∂^2 vi ∂xj ∂xj

  • fi

The linear law: ¯v 1 uτ

uτ x 2 ν

or ¯v+ 1 = x+ 2

The log-law:

¯v 1 uτ

κ

ln

( (^) x 2 uτ ν

  • B or ¯v+ 1 =

κ

ln

x+ 2

+ B

◮The exact k equation reads

∂v¯j k ∂xj

= −v′ iv j′

∂v¯i ∂xj

∂xj

[

ρ

v′ j p′^ +

v j′ v i′v′ i − ν

∂k ∂xj

]

− ν

∂v′ i ∂xj

∂v′ i ∂xj

◮The exact K equation reads

∂¯vj K ∂xj

= ν

∂^2 K

∂xj ∂xj

ρ

∂v¯i ¯p ∂xi

− ν

∂v¯i ∂xj

∂¯vi ∂xj

∂v¯iv′ iv j′ ∂xj

  • v′ iv′ j

∂¯vi ∂xj

◮The modelled k and ε equations

∂k ∂t

  • ¯vj

∂k ∂xj

= νt

∂¯vi ∂xj

∂v¯j ∂xi

∂¯vi ∂xj

  • giβ

νt σθ

∂ θ¯ ∂xi

−ε +

∂xj

[(

ν +

νt σk

∂k ∂xj

]

∂ε ∂t

  • ¯vj

∂ε ∂xj

ε k

cε 1 νt

∂v¯i ∂xj

∂¯vj ∂xi

∂¯vi ∂xj

  • cε 1 gi

ε k

νt σθ

∂ ¯θ ∂xi

− cε 2

ε^2 k

∂xj

[(

ν +

νt σε

∂ε ∂xj

]

νt = Cμ

k^2 ε ◮Wall functions

uτ =

κ¯v 1 ,P ln(Euτ δx 2 /ν) kP = C− μ 1 /^2 u^2 τ , Cμ = 0. 09

εP = P k^ =

u^3 τ κδx 2 ◮Low-Reynolds number model: different wall boundary conditions for ε:

εwall = ν

∂^2 k ∂x^22

εwall = 2ν

k ∂x 2

εwall =

2 νk x^22

◮In the Boussinesq assumption an eddy (i.e. a turbulent) viscosity is in- troduced to model the unknown Reynolds stresses in Eq. 1. The stresses are

modelled as

v′ iv′ j = −νt

∂v¯i ∂xj

∂¯vj ∂xi

δij k = − 2 νt s¯ij +

δij k

Trick 1:

Ai ∂Bj ∂xk

∂AiBj ∂xk − Bj

∂Ai ∂xk

Trick 2:

Ai ∂Ai ∂xj

∂AiAi ∂xj