Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Formulas and Equations for First Midterm in Physics, Cheat Sheet of Physics

A comprehensive formula sheet for the first midterm exam in a physics course. It covers a wide range of topics, including relativity, relativistic mechanics, atomic structure, quantization of light, and quantum mechanics. The formulas and equations are presented in a clear and organized manner, making it a valuable resource for students preparing for the exam. Important constants, useful relationships, and explanations of key concepts, allowing students to review and understand the material in depth. With its detailed coverage of the course content, this formula sheet can serve as an essential study guide and reference tool for students to excel in the first midterm examination.

Typology: Cheat Sheet

2021/2022

Uploaded on 05/15/2022

adama-sawadogo
adama-sawadogo 🇺🇸

1 document

1 / 4

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
!
1!
Formula(Sheet:(First(midterm(2203,(Fall(2012(
1) Relativity:(space(and(time(((!
Transforms!from!S!to!S:!:!!!!γ =(1/(1@(vo2(/c2)1/2!!!vo!in!along!the!x!axis.!
x!=!γ(x!–!vot)! v’x!=!(vx!–!vo)/(1!–!vxvo/c2)!
y!=!y! v’y!=! vy/γ!(1!–!vxvo/c2)!
z!=!z! v’z!=! vz/γ!(1!–!vxvo/c2)!
z!=!z!
t!=!γ!(t!–!(vo/c2)x)!
Change!sign!to!go!from!S’!to!S:!
Time!dilation!Δt=γΔt0:!Δt0!Proper!measurement!of!time.!
Length!contraction!Λ=ΔL0/γ :!!L0!proper!measurement!of!length.!
!
2)(( Relativistic(Mechanics(
E=!γ [E!–!(vo/c)(pc)]! p!=!γ![p!–!(vo/c2)/E]!
p=!γ!mv(((((pc!=!γ!mc2(v/c)! EK(kinetic!energy)!=!mc2(γ!–1)!
F=dp/dt! E!(total!energy)!=!γ!mc2!
E2!=!p2c2!+!(mc2)2:!
E2mc2
( )
2
! E=pc!for!massless!particle!
v!=!pc2/E! E!=!EK!+!mc2!
!
Relativistic!Doppler!shift!!!!!f/f!=!γ![1!–!(v/c)cosθ] or!f/f!=![(1‐v/c)/(1+v/c)]1/2!(for!θ!=!0o)!
3) Atoms(
Notation!!!
Z
AZN
!!Where!A=Z+N!with!Z!being!the!number!of!protons!and!N!the!number!of!
neutrons.!!An!example!is!Carbon!with!6!neutrons!and!6!protons!!
6
12C6
!
!Kinetic!theory!pV=nRT!or!pV=NkBT,!with!kB!the!Boltzmann’s!constant!and!R!the!universal!
gas!constant.!
! kB=R/NA!!!!!!NA!is!Avogadro’s!number!
( average(kinetic(energy(
1
2
m v 2=3
2
kBT
(
4)( Quantization(of(light:(
Photon!has!energy!hf!!
E!=!hf,!
E=
ω
,!with!
ω
=2πf
! E!=!hc/λ =!1240/λ!!eV!nm
E=pc! !
!
Photoelectic(effect! Compton!Scattering!
Kmax!=!hf!–eφ!λ!‐ λ!=!λc(1!–!cos!θ)
eφ!is!work!function! λc!=!h/mec!=!0.00246!nm!
!
Group!velocity!
,!!!Phase!velocity!!
vp=c2
v
!!!and!
v=vg
!
pf3
pf4

Partial preview of the text

Download Formulas and Equations for First Midterm in Physics and more Cheat Sheet Physics in PDF only on Docsity!

Formula Sheet: First midterm 2203, Fall 2012

1) Relativity: space and time Transforms from S to S’: : γ = 1/(1 vo^2 /c^2 )1/2^ vo in along the x axis. x’ = γ(x – vot) v’x = (vx – vo)/(1 – vxvo/c^2 ) y’ = y v’y = vy/γ (1 – vxvo/c^2 ) z’ = z v’z = vz/γ (1 – vxvo/c^2 ) z’ = z t’ = γ (t – (vo/c^2 )x) Change sign to go from S’ to S: Time dilation Δt=γΔt 0 : Δt 0 Proper measurement of time. Length contraction Λ=ΔL 0 /γ : L 0 proper measurement of length. 2) Relativistic Mechanics E’ = γ [E – (vo/c)(pc)] p’ = γ [p – (vo/c^2 )/E] p = γ m v p c = γ mc^2 ( v /c) EK(kinetic energy) = mc^2 (γ – 1) F =d p /dt E (total energy) = γ mc^2 E^2 = p^2 c^2 + (mc^2 )^2 : E 2 − mc 2

2 E=pc for massless particle v = p c^2 /E E = EK + mc^2 Relativistic Doppler shift f’/f = γ [1 – (v/c)cosθ] or f’/f = [(1‐v/c)/(1+v/c)]1/2^ (for θ = 0o) 3) Atoms Notation € Z A ZN Where A=Z+N with Z being the number of protons and N the number of neutrons. An example is Carbon with 6 neutrons and 6 protons € 6 12 C 6 Kinetic theory pV=nRT or pV=NkBT, with kB the Boltzmann’s constant and R the universal gas constant. kB=R/NA NA is Avogadro’s number average kinetic energy

m v^2 =

kB T 4 ) Quantization of light: Photon has energy hf

E = hf, E = ω , with ω = 2 π f E = hc/λ = 1240/λ eV nm

E=pc Photoelectic effect Compton Scattering Kmax = hf – eφ λ’ ‐ λ = λc(1 – cos θ ) eφ is work function λc = h/mec = 0.00246 nm Group velocity vg = d ω dk , Phase velocity v (^) p = c^2 v and v = vg

Bragg Scattering 2dsinθ=nλ 5 ) Quantization of Atomic Energy levels: Bohr Atom Rydberg series series

λ

= R [

n 2 f

n 2 i ], i is the initial state and f the final state: R is Rydberg constant. Bohr Model: The angular momentum is quantized L = mvr = n  or €

2 π rn = n λ yielding the

following equations: rn = n^2 ^2 ke 2 m where the Bohr orbit radius is defined a 0 =

^2

ke 2 m = 0.05292 nm En = − m 2 n

ke^2 

2 giving En = − 13.6 eV n 2 velocity: vn = ke^2 n  For a real system m should be the center of mass m’ where € m ' = mM m + M = M 1 + M / m Then r ' n = n^2 ^2 ke 2 m ' = n 2 me m ' a 0 and E ' n =^ −^ m ' 2 n

2 (^

ke^2 

2 = − m ' me

E 1

n 2 Hydrogen like ions: one electron bound to Ze nucleus: vn = ke^2 n  , En = − mZ 2 2 n^2

ke 2 

2 , rn = n^2 ^2 kZe 2 m 6) Particles as waves p = h/λ or λ = h/p ke 2 = 1.44 nm ( eV ) λ = hc 2 mc^2 K

1240 eV i nm 2 mc^2 K de Broglie wave length λ = h/p Uncertainty principle

Δ k Δ x ≥ 1 / 2 and Δ ωΔ t ≥ 1/ 2 which can also be written as

Δ p Δ x ≥ / 2 and Δ E Δ t ≥  / 2 7) Schrödinger Equation in one Dimension General properties of Schrödinger’s Equation: Quantum Mechanics Schrödinger Equation (time dependent) €

^2

2 m

∂^2 Ψ

x^2

  • U Ψ = i

t Standing wave € Ψ( x , t ) = Ψ( x ) ei ω t Schrödinger Equation (time independent) −

2 2 m

2 ψ ∂ x 2 + U^ ψ^ =^ E^ ψ

Constants c = 2.998 x 10+8^ m/s h = 6.626 x 10‐^34 J.sec =4.136 x 10‐^15 eV.sec  = 1.055 x 10 − 34 J. s = 6.582 x 10 − 16 eV. s k =

4 π ε 0 = 8.988 x 10 9 N. m 2 / C 2 me = 9.109 x x 10‐^31 kg mec^2 = 0.511 MeV mp = 1.673 x 10‐^27 kg mpc^2 = 938.28 MeV mn = 1.675 x 10‐^27 kg mnc^2 = 939.57 MeV mp= 1836me mn=1839me 1u = 931.5 MeV/ c^2 nm = 10 ‐^9 m e = 1.6 x 10‐^19 coul kB = 8.617 x 10‐^5 eV/K eV=1.6 x 10‐^19 J NA= 6.022x10^23 objects/mole binomial expansion: (1 + x)n^ = 1 + nx + n(n‐1)x^2 /2! + n(n‐1)(n‐2)x^3 /3! μm=10‐^6 m ,nm=10‐^9 m, pm=10‐^12 m, fm=10‐^15 m K = 10^3 , M = 10^6 , G = 10^9

Useful relationships:

hc = 1240 eV i nmc = 197 eV i nm ke 2 = 1.44 eV i nm ke^2  c

R=

m ( kee )

2 4 π c ^3

mc^2 ( k ee )

2

4 π (  c )

3 R = 0.011 nm −^1