Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Functions of a Complex Variable and Calculus of Residues, Schemes and Mind Maps of Mathematics

A comprehensive overview of functions of a complex variable and calculus of residues. It covers key concepts such as complex numbers, analytic functions, cauchy's integral theorem, laurent series, and residue theorem. Numerous examples and exercises to illustrate the concepts and aid in understanding. It is suitable for students studying complex analysis in mathematics or related fields.

Typology: Schemes and Mind Maps

2023/2024

Available from 11/02/2024

pooja-30
pooja-30 🇮🇳

1 document

1 / 18

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
func
tionc
of
a
Complex
Ancl
Calculor
of
t
sidues
7he
generol
solution
of
the
quadra
tie
equotion,
cormp
lex
Numbe
Iathere
part
Im
2 y
The
,
-B
± CB-4ac)2
2A
X
-Bt
(B44)e
this
lead:
to
ch
velopmtnt
of
compla
variablks
2A
rsesen
ted
heal
part
Re
Z
Re Z 2
zo
implies
y-o
Varioble
J-)
(
AclelH'o
o (substacten)
:
imginng
soluhi,
as
algebsoit
pera
tions
os
tso
Comple
inginay
(z+y,)
+(ant)
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12

Partial preview of the text

Download Functions of a Complex Variable and Calculus of Residues and more Schemes and Mind Maps Mathematics in PDF only on Docsity!

functionc of a

Complex

Ancl Calculor of t sidues

’ 7he^ generol^ solution

of the (^) quadratie (^) equotion,

cormp lex Numbe

Iathere

part

Im 2 y

The

,

-B ± CB-4ac)

2A

X -Bt (B44)e

this lead: to ch velopmtnt of compla

variablks

2A

rsesented

heal part

ReRe ZZ^2

zo implies y-o

Varioble

J-)

( AclelH'o o (substacten)

: imginng soluhi,

as

algebsoit pera tions os tso Comple

inginay

(z+y,) +(ant)

(zj2-) (z1ti)^ (^

ti)

(3) Dins tòn : (Z, f)

Z

21 t

L

( 2 Assoative^ law of^ additon

(io Co mnutatin

cilg Asso^ ciatve^ lacs^ of^

mu ttiplicatio,

Z, (2,2)

(èu) Dstributive^ la

las of^ multh^ icg^ ton

Z (2t 2)

(2,2) 2

    • graphical repsesenfatton
  • Propertiès of Modulur /z |I
  • |2 + 21)l2/ -/2)
  • Proputis of Asquement (8) , Arg (3)
  • fropeatei^ of^ comple^ conjufate
(2/t 2)* 2t t Z*

r2r2>)* =2,* 22"

Ang C") t Angl) t

2

Tmportant Re latlas 8 CorÊeib4-io

2

Cos(io) = co b()

De- Moiyhe's Thm;

t, e

the product^ of^ two^ Compl^

wriablu,

-Por the^ case^ of^ n'^

terms.

When 2,^21 -

Cos

: n,^ h^ cos^ (9,^ to)^ +^ istà^ (9, +0))

nth noot^ of^ cony^ lex

2

whehe 0,<

2

no.

vGra

  • (cos9tsto^ )^
Cosn9^ t^ n
the pro^ doduct^ be^ Cone

The nth Toot^ of^ Z^ mas^ be^ wsiten^ as

for disfin ct root ro! 2

-IP f(z) is onalyie

do

Consttutes the

all

sufticient condi^ tion^ )

Amalytie

’ Not anastie

froc tion at

tHarmonia functlón s

TF van d

deri va tver

’ No t analytE

Ca uch4 - Riemonn cg

conti'n dous

nceSs ars conditto

to

)

posse cr co rtinvor parttàL

second order, then

Milne Thomsen Me thod : B knowtng

in aginay pont Case I -

) Find portial d rivatives,

Case -

oy

3) pla)

V:e

and

Va (20)

can fint fl)

ls

2V *e^ cosy^ +(xcosy-yeine

Real or

74 2e?

aY_vesioytalsin)- (ycosy tsiay))

e (-^ x^ slh^ y-ycory^ -cing)

and finishig

the repuon

  • AlL other

at

Proof -

Conne cfed rgon

tn to tUnconne cfed too piecu.

J

rfone 9aid^ to^ be^ multiyl;

ano tlies (^) potst , 2 , (^) searctu

(a) slmplysimply^ connecfed

Acc. to stokes

C

Fiut te m

(6) mu^ lhply^ Conne tfed

theosen

fwo dnostons^ i^

becomy

Se con cl

H the

Cauchy

fy

statistrd

Ad

dsfvox t udy -)

2 20

According to^ thic^ Ah^ vla

27f o)

(4)

Lo pli) d

C

Taylor's^ Theore^ mt

let

2-

and ra diu R,

Dro a

If a^ frn^ fl)^ analsfie^ at all

poiats^ tasie

cce C,^ wih5witth^ itsits^ cece^ nthenthe^ at^ the^ poin

M.

then at each Bt. 2

(Ar

n

be a poth t

(2-o) la).

Consi des ang^ porh^ t^ z^ in^ side

2/

pnra) (z-a) +..

SY) C.

a-(7-a)

Zo riside

Zo ouri'de

cê cle C, enclosing that point ?uth abe a

C

As

s

APpltng 8inonial

th

by-a

C|

Strres

theorem

|+ 2-9 +

(h-a)' (w- a)

Multiply ) by fltA)

+(2-) -2-) (wea)nl

conVrf a^ uniformly,^ #rrce^ the^

sers

+(-0°(Ja

) l2-/

(wa

8y int oducin a

Uring Cauchy's Cntqra Pormula

CI

Integral along

neqative

Taylor': Serru

w. 2

a cros^ Cut^ AB,^ mutt-^ connected

tonVehkd a sinply^ connec^ lec

27 -

Tote gratr

27,

-a

+(2-) lus

21 w-

alon

For fås^ t^ int^ gral^ Aw)^ expanded^ ex^ etty u'ke

271

clock cs^ (se.^ soitis

lies On C.

C

ABand BA^ cnce^ e

2-a

|w- al

In th seconcd intqral, z lies

So hete

Multipy by flw,^ we

w-

Thte qratng

2/ C

- L^ fl):^ Plw

w. 2

Cu-Qta-

2-a

(2--a)

27i

2 -a

2-a

e-a)

(w-a)-()

2

-L/-wra)

(?-a)(

lw-) f(wt 2Ai (2-c)

2

lw. 2iC2-a)

b (2-a) 3

(2-a) 21 (-a-!

olwt

here L :