



Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
A comprehensive overview of fundamental mechanics of materials equations, covering topics such as stress, strain, deformation, torsion, flexure, and buckling. It includes definitions, formulas, and tables for various materials and geometries, making it a valuable resource for students and professionals in engineering and related fields.
Typology: Cheat Sheet
1 / 5
This page cannot be seen from the preview
Don't miss anything!
Average normal stress in an axial member
avg F A Average direct shear stress
avg (^) AV V Average bearing stress
b b
Average normal strain in an axial member
avg (^) L
Average normal strain caused by temperature change T (^) T Hooke’s Law (one-dimensional) E and G Poisson’s ratio
lat long Relationship between E , G , and ν G E 2 1( ) Defi nition of allowable stress (^) allow ^ failure^ (^) allow failure FS
or FS Factor of safety
FS ^ failureactual or FS failureactual
Deformation in axial members
i i i i i
or
Force-temperature-deformation relationship FL TL (^) AE
Maximum torsion shear stress in a circular shaft max Tc J where the polar moment of inertia J is defined as J (^) ^ 2^ [ R^4 r^4 ] (^) 32 [ D^4 d^4 ]
Angle of twist in a circular shaft
i i i i i
or
Power transmission in a shaft P T
Rule Rule ( )
Rule
0 (^2 1 )
2
V V V w x dx dV dx
x
x
w x
M M M V dx dM dx
x
x
Rule
Rule Rule
(^2 1 )
Flexure formula (^) x My I
Mc I
c or^ max where Unsymmetric bending of arbitrary cross sections
x z^ yz y z yz
y
y yz y z y
I z I y I I I
I y I z I I I
zz 2 Mz
Unsymmetric bending of symmetric cross sections
x y y
z z
y z z y
M z I
M y I
^ tan
Horizontal shear stress associated with bending
H VQ It Shear fl ow formula q VQ I Shear fl ow, fastener spacing, and fastener shear relationship qs n Vf f n (^) f f Af For circular cross sections, Q (^) 1 d 12
(^3) (solid sections)
Q (^) 2 [ R (^) r ] (^) [ D (^) d ] 3
(^3 3 3 3) (hollow sections)
Elastic curve relations between w , V , M , θ , and v for constant EI Deflection Slope
Moment
Shear
v dv dx M EI d v dx V
2 2 ddM dx
EI d v dx w dV dx
EI d v dx
3 3 4 Load 4
or 𝑞 =
Normal and shear stresses on an arbitrary plane
n x y xy nt x y
cos sin sin cos sin
ccos (^) xy ( cos 2 sin^2 ) or
Principal stress magnitudes
p 1 p 2 x^ y^ x^ y xy
2 2 , ^2
Orientation of principal planes
tan 2 2
p
xy x y
Maximum in-plane shear stress magnitude
max ^ ^ or max
x y^ xy
p p 2 2
2 2 1 2
avg ^
x y 2 Absolute maximum shear stress magnitude
(^) abs max ^ max^ min 2 Normal, stress invariance (^) x (^) y n t (^) p 1 p 2
Normal and shear strain in arbitrary directions
n x y xy nt x y
cos sin sin cos ( )sin
2 2 2 ccos (^) xy (cos 2 sin 2 )
or
Principal strain magnitudes
p p
x y x y xy 1 2
2 , (^2 2 )
2
Orientation of principal strains
tan 2
p
xy x y
Maximum in-plane shear strain
(^) max ^ ^ ^ 2 2 2 or ma
2 2
x y xy xx
avg ^
p p x y
1 2
Normal strain invariance x (^) y (^) n (^) t (^) (^) p 1 p 2
Normal stress/normal strain relationships
x x y z
y y x z
z z x
[ ( (^) y )]
Shear stress/shear strain relationships (^) xy (^) xy (^) yz (^) yz (^) zx zx G G G
where
G E 2 1( ) Normal stress/normal strain relationships for plane stress
^
x x y
y y x
z x y
or
x x y
y y x
2
2
Shear stress/shear strain relationships for plane stress (^) xy (^) xy (^) xy xy G 1 or G
Axial stress in spherical pressure vessel a pr t
pd 2 4 t Longitudinal and hoop stresses in cylindrical pressure vessels (^) long ^ pr hoop t
pd t
pr t
pd 2 4 2 t
Mises equivalent stress for plane stress (^) M [ (^) p^21 (^) p 1 (^) p 2 (^) p^2 2 ] 1 2/^ [ (^) x^2^ x y (^) y^2^ 3 xy^2 ]^1 /2^2
Euler buckling load
P EI cr ^ KL
Euler buckling stress
(^) cr E KL r
2 ( )^2 Radius of gyration
r I A
2 cos 2𝜃^ +^ 𝜏𝑥𝑦^ sin 2𝜃 𝜎𝑡 =
2 cos 2𝜃 − 𝜏𝑥𝑦^ sin 2𝜃 𝜏𝑛𝑡 = −
2 sin 2𝜃^ +^ 𝜏𝑥𝑦^ cos 2𝜃
2 cos 2𝜃^ + 𝜀𝑡 =
𝛾^2 cos 2𝜃 − 𝑛𝑡 2 =^ −
2 sin 2𝜃^ +^
2 cos 2𝜃
𝜀𝑧
𝑥^
2 sin 2𝜃 𝛾𝑥𝑦 2 sin 2𝜃
S
IMPLY
S
UPPORTED
B
EAMS
PL 16
EI
θ
θ = −
= −
max
PL 48
v
EI
= −
(
4
)
48
for 0
2
Px
v
L
x
EI
L
x
= −
−
≤
≤
2
2
1
2
2
2
θ θ
3
at
Pa b
v
LEI x^
a
= −
=
(^
)
6
for 0
Pbx
v
L
b
x
LEI
x
a
= −
−
− ≤
≤
1 2
θ θ
2
max
(
3
)
M x 6
v
L
Lx
x
LEI
= −
−
wL 24
EI
θ
θ = −
= −
max
(^5384)
wL
v
EI
= −
(^
2
)
24
wx
v
L
Lx
x
EI
= −
−
2
2
1
2
2
2
2
θ θ
3
2
2
3
2
2
2
2
2
3
4 (^
4
2
4
24
4
)^
for 0
wx
v^
Lx
aLx
a x
a L
LEI
a L
a^
x^
a
= −
−^
+^
−^
+^
≤^
≤
2
3
2
2
2
2
(
6
4
)
24
for
wa
v^
x^
Lx
a x
L x
a L
LEI
a^
x^
L
= −
−^
−
≤^
≤
3 0
1
3 0
2
θ θ
max
at
w L
v
EI
x^
L
= −
=
(
10
3
)
360
w x
v
L
L x
x
LEI
= −
−
C
ANTILEVER
B
EAMS
max
PL 2
EI
θ
= −
max
PL 3
v
EI
= −
(
)
Px 6
v
L
x
EI
= −
−
max
PL 8
EI
θ
= −
max
(^548)
PL
v
EI
= −
(
2 )
for 0
2
12
(
)^
for
2
Px 48
L
v
L
x
x
EI PL
L
v
x
L
x
L
EI
= −
−
≤
≤
= −
−
≤
≤
max
M
L EI
θ
= −
max
M^2
L
v^
EI
= −
M 2
x
v
EI
= −
max
wL 6
EI
θ
= −
max
wL 8
v
EI
= −
(
4
)
wx 24
v
L
Lx
x
EI
= −
−
max
w L 24
EI
θ
= −
max
w L 30
v
EI
= −
(
10
5
)
120
w x
v
L
L x
Lx
x
LEI
= −
−
−