Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Fundamental Mechanics of Materials Equations: A Comprehensive Guide, Cheat Sheet of Mechanics of Materials

A comprehensive overview of fundamental mechanics of materials equations, covering topics such as stress, strain, deformation, torsion, flexure, and buckling. It includes definitions, formulas, and tables for various materials and geometries, making it a valuable resource for students and professionals in engineering and related fields.

Typology: Cheat Sheet

2023/2024

Uploaded on 08/31/2024

raj-on-fire
raj-on-fire 🇮🇳

1 document

1 / 5

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Fundamental Mechanics of Materials Equations
Basic defi nitions
Average normal stress in an axial member
avg F
A
Average direct shear stress
avg V
AV
Average bearing stress
b
b
F
A
Average normal strain in an axial member
avg L
Average normal strain caused by temperature change
TT⫽⌬
Hooke’s Law (one-dimensional)
⫽⫽EGand
Poisson’s ratio
⫽⫺ lat
lon
g
Relationship between E, G, and ν
GE
21()
Defi nition of allowable stress
allow
failure
allow
failure
FS or FS
⫽⫽
Factor of safety
FS or FS
failure
actual
failure
actual
⫽⫽
Axial deformation
Deformation in axial members
⫽⫽
FL
AE
FL
AE
ii
ii
i
or
Force-temperature-deformation relationship
 T
L
FL
AE
⫽⫹
Torsion
Maximum torsion shear stress in a circular shaft
max Tc
J
where the polar moment of inertia J is defi ned as
⫽⫺
JRr Dd
[][ ]

232
44 4 4
Angle of twist in a circular shaft

⫽⫽
TL
JG
TL
JG
ii
ii
i
or
Power transmission in a shaft
PT
Six rules for constructing shear-force
and bending-moment diagrams
Rule
Rule ( )
Rule
1
2
3
0
21
1
2
:
:
:
VP
VVV wxdx
dV
dx
x
x
⫽⫺⫽
⫽⫺
wx
MM M Vdx
dM
dx V
x
x
()
Rule
Rule
Rule
4
5
6
21
1
2
:
:
:
MM⫽⫺ 0
Flexure
Flexure formula

x
My
I
Mc
I
M
SSI
c
or where
max
⫽⫺
Unsymmetric bending of arbitrary cross sections
x
zyz
yz yz
y
yyz
yz y
Iz I y
II I MIy I z
II I
2zz
z
M
2
Unsymmetric bending of symmetric cross sections
x
y
y
z
z
yz
zy
Mz
I
My
I
MI
MI
tan
⫽⫽
Horizontal shear stress associated with bending
H
VQ
It
Shear fl ow formula
qVQ
I
Shear fl ow, fastener spacing, and fastener shear relationship
qs n V n A
ff ff f
ⱕ⫽
For circular cross sections,
Qd
1
12
3(solid sections)
QRr Dd
⫽⫽⫺⫺
[][ ]
2
3
1
12
33 33
(hollow sections)
Beam defl ections
Elastic curve relations between w, V, M, θ, and v for
constant EI
Deflection
Slope
Moment
Shear
⫽⫽
v
dv
dx
MEI
dv
dx
V
2
2
ddM
dx EI dv
dx
wdV
dx EI dv
dx
⫽⫽
3
3
4
4
Load
𝜀𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 = 𝛥𝑑
𝑑 𝑜𝑟 𝛥𝑤
𝑤 𝑜𝑟 𝛥𝑡
𝑡
𝛾=𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑎𝑛𝑔𝑙𝑒 𝑓𝑟𝑜𝑚 90°
𝑤𝑎𝑡𝑡𝑠 =𝑁𝑚/𝑠
ℎ𝑝 =6600 𝑖𝑛 𝑙𝑏/𝑠
𝑟2𝑇
1=𝑟
1𝑇2
𝑟
1𝜔1=𝑟2𝜔2
𝑤ℎ𝑒𝑟𝑒 𝑄=∑𝑦𝑖𝐴𝑖
or
𝑞=𝑉
𝑏𝑒𝑎𝑚𝑄
𝐼=𝑛𝑉
𝑓𝑎𝑠𝑡𝑒𝑛𝑒𝑟
𝑠
𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑏𝑒𝑎𝑚𝑠
𝑛=𝐸𝐵
𝐸𝐴
𝜎
𝐴=𝑀𝑦
𝐼𝑇
𝜎𝐵=−𝑛𝑀𝑦
𝐼𝑇
𝜎 𝑠𝑖𝑔𝑚𝑎
𝜀 𝑒𝑝𝑠𝑖𝑙𝑜𝑛
𝜏 𝑡𝑎𝑢
𝛾 𝑔𝑎𝑚𝑚𝑎
𝜈 𝑛𝑢
𝛿 𝛥 𝑑𝑒𝑙𝑡𝑎
𝛼 𝑎𝑙𝑝ℎ𝑎
𝜑 𝑝ℎ𝑖
𝜔 𝑜𝑚𝑒𝑔𝑎
𝜃 𝑡ℎ𝑒𝑡𝑎
𝑔𝑒𝑎𝑟𝑠
pf3
pf4
pf5

Partial preview of the text

Download Fundamental Mechanics of Materials Equations: A Comprehensive Guide and more Cheat Sheet Mechanics of Materials in PDF only on Docsity!

Fundamental Mechanics of Materials Equations

Basic definitions

Average normal stress in an axial member

 avg  F A Average direct shear stress

 avg  (^) AV V Average bearing stress

b b

F
 A

Average normal strain in an axial member

 avg  (^) L

Average normal strain caused by temperature change  T (^)    T Hooke’s Law (one-dimensional)   E  and   G Poisson’s ratio 

lat long Relationship between E , G , and ν G  E 2 1(   ) Defi nition of allowable stress  (^) allow ^ failure^  (^) allow  failure FS

or   FS Factor of safety

FS ^  failureactual or FS  failureactual

Axial deformation

Deformation in axial members

 ^ FL   ∑

AE
F L
A E

i i i i i

or

Force-temperature-deformation relationship  FL   TL  (^) AE 

Torsion

Maximum torsion shear stress in a circular shaft  max  Tc J where the polar moment of inertia J is defined as J (^) ^  2^ [ R^4  r^4 ] (^)  32  [ D^4  d^4 ]

Angle of twist in a circular shaft

^ TLJG  ∑

T L
J G

i i i i i

or

Power transmission in a shaft P  T

Six rules for constructing shear-force

and bending-moment diagrams

Rule Rule ( )

Rule

0 (^2 1 )

2

V P

V V V w x dx dV dx

x

x

w x

M M M V dx dM dx

V

x

x

Rule

Rule Rule

(^2 1 )

:^2
 M   M 0

Flexure

Flexure formula  (^) x My  I

Mc I

M
S
S I

c   or^ max  where  Unsymmetric bending of arbitrary cross sections

x z^ yz y z yz

y

y yz y z y

I z I y I I I

M

I y I z I I I

zz 2 Mz

 ^  ⎥⎥

Unsymmetric bending of symmetric cross sections

x y y

z z

y z z y

M z I

M y I

M I
M I

 ^ tan 

Horizontal shear stress associated with bending

H VQ  It Shear fl ow formula q VQ  I Shear fl ow, fastener spacing, and fastener shear relationship qs  n Vf f  n (^) f f Af For circular cross sections, Q (^)  1 d 12

(^3) (solid sections)

Q (^)  2 [ R (^)  r ] (^)  [ D (^)  d ] 3

(^3 3 3 3) (hollow sections)

Beam defl ections

Elastic curve relations between w , V , M , θ , and v for constant EI Deflection Slope

Moment

Shear

v dv dx M EI d v dx V

2 2 ddM dx

EI d v dx w dV dx

EI d v dx

3 3 4 Load 4

𝑑 𝑜𝑟^
𝑤 𝑜𝑟^

or 𝑞 =

𝐼 =^

Plane stress transformations

Normal and shear stresses on an arbitrary plane            

n x y xy nt x y

cos sin sin cos sin

ccos   (^) xy ( cos 2  sin^2  ) or

Principal stress magnitudes



p 1 p 2 x^ y^ x^ y xy

2 2 , ^2

Orientation of principal planes

tan 2 2

p  

xy x y

Maximum in-plane shear stress magnitude

max ^ ^  or max

x y^  xy

p p 2 2

2 2 1 2

avg ^

x  y 2 Absolute maximum shear stress magnitude

 (^) abs max  ^ max^   min 2 Normal, stress invariance  (^) x   (^) y  n  t   (^) p 1  p 2

Plane strain transformations

Normal and shear strain in arbitrary directions            

n x y xy nt x y

cos sin sin cos ( )sin

2 2 2 ccos   (^) xy (cos 2  sin 2  )

or

Principal strain magnitudes



p p

x y x y xy 1 2

2 , (^2 2 )

⎟ ^

2

Orientation of principal strains

tan 2 

p  

xy x y

Maximum in-plane shear strain

 (^) max ^ ^ ^  2 2 2 or ma

2 2   

⎟ ^ ^ 

x y xy xx

avg ^

p p x y

1 2

Normal strain invariance  x (^)   y (^)   n (^)   t (^)   (^) p 1  p 2

Generalized Hooke’s Law

Normal stress/normal strain relationships     

    

   

x x y z

y y x z

z z x

E
E
E
[ ( )]
[ (  )]

[ ( (^)  y )]

Shear stress/shear strain relationships  (^) xy  (^) xy  (^) yz  (^) yz  (^) zx zx G G G

 1  1 ^1

where

G  E 2 1(   ) Normal stress/normal strain relationships for plane stress   

  

 ^  

x x y

y y x

z x y

E
E
E

or

x x y

y y x

E
E
  (^  )
  (^  )

2

2

Shear stress/shear strain relationships for plane stress  (^) xy  (^) xy  (^) xy xy G  1 or  G

Pressure vessels

Axial stress in spherical pressure vessel a pr t

pd  2  4 t Longitudinal and hoop stresses in cylindrical pressure vessels  (^) long ^ pr   hoop  t

pd t

pr t

pd 2 4 2 t

Failure theories

Mises equivalent stress for plane stress  (^) M  [  (^) p^21   (^) p 1  (^) p 2   (^) p^2 2 ] 1 2/^ [  (^) x^2^   x y   (^) y^2^  3 xy^2 ]^1 /2^2

Column buckling

Euler buckling load

P EI cr ^ KL

^2
( )^2

Euler buckling stress

 (^) cr E KL r

2 ( )^2 Radius of gyration

r I A

Fundamental Mechanics of Materials Equations

2 +^

2 cos 2𝜃^ +^ 𝜏𝑥𝑦^ sin 2𝜃 𝜎𝑡 =

2 cos 2𝜃 − 𝜏𝑥𝑦^ sin 2𝜃 𝜏𝑛𝑡 = −

2 sin 2𝜃^ +^ 𝜏𝑥𝑦^ cos 2𝜃

2 +^

2 cos 2𝜃^ + 𝜀𝑡 =

𝛾^2 cos 2𝜃 − 𝑛𝑡 2 =^ −

2 sin 2𝜃^ +^

2 cos 2𝜃

𝜀𝑧

𝑥^

2 sin 2𝜃 𝛾𝑥𝑦 2 sin 2𝜃

S

IMPLY

S

UPPORTED

B

EAMS

Beam

Slope

Deflection

Elastic Curve

PL 16

EI

θ

θ = −

= −

max

PL 48

v

EI

= −

(

4

)

48

for 0

2

Px

v

L

x

EI

L

x

= −

2

2

1

2

2

2

(^

P

b L

b

LEI

Pa L

a

LEI

θ θ

3

at

Pa b

v

LEI x^

a

= −

=

(^

)

6

for 0

Pbx

v

L

b

x

LEI

x

a

= −

− ≤

1 2

M 3 6

L

EIMLEI

θ θ

2

max

at

ML

v^

EI

x^

L

⎛^

⎜^

⎜^

⎝^

(

3

)

M x 6

v

L

Lx

x

LEI

= −

wL 24

EI

θ

θ = −

= −

max

(^5384)

wL

v

EI

= −

(^

2

)

24

wx

v

L

Lx

x

EI

= −

2

2

1

2

2

2

2

wa 24

L

a

LEIwa

L

a

LEI

θ θ

3

2

2

at

wa

v^

L^

aL

a

LEI

x^

a

3

2

2

2

2

2

3

4 (^

4

2

4

24

4

)^

for 0

wx

v^

Lx

aLx

a x

a L

LEI

a L

a^

x^

a

= −

−^

+^

−^

+^

≤^

2

3

2

2

2

2

(

6

4

)

24

for

wa

v^

x^

Lx

a x

L x

a L

LEI

a^

x^

L

= −

−^

≤^

3 0

1

3 0

2

w L

EI

w L

EI

θ θ

max

at

w L

v

EI

x^

L

= −

=

(

10

3

)

360

w x

v

L

L x

x

LEI

= −

C

ANTILEVER

B

EAMS

Beam

Slope

Deflection

Elastic Curve

max

PL 2

EI

θ

= −

max

PL 3

v

EI

= −

(

)

Px 6

v

L

x

EI

= −

max

PL 8

EI

θ

= −

max

(^548)

PL

v

EI

= −

(

2 )

for 0

2

12

(

)^

for

2

Px 48

L

v

L

x

x

EI PL

L

v

x

L

x

L

EI

= −

= −

max

M

L EI

θ

= −

max

M^2

L

v^

EI

= −

M 2

x

v

EI

= −

max

wL 6

EI

θ

= −

max

wL 8

v

EI

= −

(

4

)

wx 24

v

L

Lx

x

EI

= −

max

w L 24

EI

θ

= −

max

w L 30

v

EI

= −

(

10

5

)

120

w x

v

L

L x

Lx

x

LEI

= −