Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

EEE 224 ELECTROMAGNETIC THEORY: Cylindrical Coordinate System, Lecture notes of Electromagnetism and Electromagnetic Fields Theory

This document informs about electromagnetism

Typology: Lecture notes

2019/2020

Uploaded on 05/20/2020

arda-koktaas
arda-koktaas 🇺🇸

10 documents

1 / 18

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
1
EEE 224 ELECTROMAGNETIC THEORY
Cylindrical Coordinate System
METU -
NCC
Assist. Prof. Dr. Özlem Özgün
Office :S-144
Phone :661 2972
E-mail :ozozgun@metu.edu.tr
Web :http://www.metu.edu.tr/~ozozgun/
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12

Partial preview of the text

Download EEE 224 ELECTROMAGNETIC THEORY: Cylindrical Coordinate System and more Lecture notes Electromagnetism and Electromagnetic Fields Theory in PDF only on Docsity!

1

EEE 224 ELECTROMAGNETIC THEORY^ Cylindrical Coordinate System

METU -^

NCC

Assist. Prof. Dr.

Özlem Özgün Office^ :^

S- Phone^ :^

661 2972 E-mail^ :^

ozozgun@metu.edu.tr Web^ :^

http://www.metu.edu.tr/~ozozgun/

2 Cartesian Coordinates^ P (x, y, z) Cylindrical Coordinates Spherical Coordinates^ P (R,^ θ, P (r,^ φ, z)^ φ)

x z^ P(x,y,z)^ y^ z^ r^ Φ x^ z^ P(r,^ Φ, z) y^ z^ θ^ R^ y Φ P(R, x Useful in problemshaving rectangularsymmetry r^ Useful in problemshaving cylindricalsymmetry θ, Φ)^ Useful in problemshaving sphericalsymmetry

Orthogonal Coordinate Systems Alternative notation:^ ρ^ is used for r. Alternative notation: r is used for R.

4

Cylindrical Coordinate System^ r

φ( , )P r

r

φ( , ,^ )P r z 5

Cylindrical Coordinate System

7 r-const surface: surface of circular cylinder (red surface) φ -const surface: semi-infinite plane

(yellow surface) z-const surface: horizontal

infinite plane

(blue surface)

™^ A point can be specified as the intersection of 3 surfaces.^ r^ = constant^ φ^ = constant^ z^ = constant

z P x y

Cylindrical Coordinate System

8 r-const surface: surface of circular cylinder φ -const surface: semi-infinite plane z-const surface: horizontal

infinite plane

r^ = const.

z^ = const. φ^ = const.

Cylindrical Coordinate System

10 EXERCISE: Define this green region using coordinate variables!

φ =^ φ^1 z= z^2 z= z^1 φ =^ φ^2

r= r^1 r= r^2

≤^ ≤ r r^ r (^1 2) φ φ^ φ≤^ ≤ 1 2 ≤^ < z z^ z 1 2

Cylindrical Coordinate System

11 EXERCISE: Define this region using coordinate variables!^ φ =^ φ^1

φ =^ φ^2 z= z^1 r= r^1 z= 0

0 ≤^ ≤^ r^ r^1 φ^ φ^ φ≤^ ≤^1 20 ≤^ < z^ z^1

Cylindrical Coordinate System

13 : always points in the direction of increasing

r, and is orthogonal to the

r-constant plane (cylindrical surface). (It points away from the z-axis.)^ : always points in the direction of increasing

φ , and is orthogonal to the

φ^ -constant plane. It is tangent to the cylindrical surface.^ : always points in the direction of increasing

z, and is orthogonal to the

z-constant plane.

Cylindrical Base (Unit) Vectors r a^ r

ˆar ˆaφ^ ˆaz

Properties: 1. Each vector is a unit 14

vector: ˆ^ ˆ^ ˆ^

ˆ^ ˆ^ ˆ^

0 rr^

zz a^ a^ a^

a^ a^ a⋅ = ⋅ =^ ⋅^ φφ

= ˆ^ ˆ^ ˆ^

ˆ^ ˆ^ ˆ^

1 r^ r

z^ z a^ a^ a^

a^ a^ a⋅ = ⋅ =^ ⋅^ φ φ

=

2. Vectors are (magnitude)^ mutually orthogonal:

Cylindrical Base (Unit) Vectors^ r

a^ r

3. Unit vectors must be arranged

such that:^ Cyclic relation ˆ^ ˆ^ ˆa^ a^ a×^ =rz^ φ ˆ^ ˆ^ ˆa^ a^ a×^ =z^ rφ^ ˆ^ ˆ^ ˆa^ a^ a×^ =z^ rφ

Cylindrical base vectors are dependent on position.

16

Transformation between Cylindrical and Cartesian Coordinates^ The relationship between a

,a, aand ax yz^

The relationship between(x,y,z) and (r,^ φ , z)^ cosx^ r^ φ^ = siny^ r^ φ^ = z^ z=^ ,a, ar^ φ z

2 2 r x y= +^1 −tan /y^ x φ =(^ ) z z=

(^ )^ (

)^ (^

(^ )^ (

(^ )

ˆ^ ˆ^ ˆ^ ˆ

ˆ^ ˆ^ ˆ^

ˆ^ ˆ^ ˆ^

ˆ^ ˆcos sin

ˆ^ ˆ^ ˆ^ ˆ

ˆ^ ˆ^ ˆ^

ˆ^ ˆ^ ˆ^

ˆ^ ˆsin cos

rr^ x^ ˆ^ ˆ xr^ y^ y

r^ z^ z

xy

x^ xy

yz^

zx

y

a^ a^ a^ a^ z^ z

a^ a^ a^ a

a^ a

aa

a^ a^ a^ a

a^ a^ a^

a^ a^ a

aa

φφ a^ a

φφ

=^ ⋅^ +

⋅^ +^

⋅^ =^

=^ ⋅^ +

⋅^ +^

⋅^ = −^

ˆ^ ˆ^ =

ˆ^ ˆ^
ˆ^ ˆ^
ˆ^ ˆ

cos^

sin^

sin^

cos

r^ x

r^ y

x

y

a^ a

a^ a

a^ a

a^ a

φ

φ

⋅^ =^
⋅^ =^
⋅^ = −^
⋅^ =

ˆ ax x

y^ ˆ ay 0

ˆ ar

ˆ a^ φ φ^ φ y^ P^ r^ φ^ x

17

Transformation between Cylindrical and Cartesian Coordinates^ The relationship between A

,A, Aand Ax yz^

,A, Ar φ z

cos^ sin^

0 sin^ cos^

0 0 0

1 x

r y z

z A

A A

A A

φ A φ^ φ−⎡ ⎤ ⎡ φ^ φ

⎤ ⎡^ ⎤ ⎢^ ⎥^ ⎢^

⎥ ⎢^ ⎥ =⎢ ⎥ ⎢^

⎥ ⎢^ ⎥ ⎢^ ⎥^ ⎢^

⎥ ⎢^ ⎥ ⎣^ ⎦^ ⎣^

ˆ^ ˆ^ ⎦ ⎣ ⎦

ˆ^ ˆ^

x^ x^ y^ y^

z^ z r^ r

z^ z A^ A a^ A a

A a A^ A a^ Aa =^ +^ +^ A a=^ +^ +^ φ^ φ^ cos

sin^0 r sin^ cos^00 0

x y z

z A

A A

A A

A φ^ φ φ φ φ ⎡^ ⎤^ ⎡^

⎤ ⎡^ ⎤ ⎢^ ⎥^ ⎢^

⎥ ⎢^ ⎥ =^ −⎢ ⎥ ⎢^

⎥ ⎢^ ⎥ ⎢^ ⎥^ ⎢^

⎥ ⎢^ ⎥ ⎣^ ⎦^ ⎣^

(^ ) (^ ) ⎦ ⎣^ ⎦ ˆ^ ˆ^

ˆ^ ˆ^ ˆ
ˆ^ ˆ^
ˆ^ ˆ^ ˆ

r^ rr^ x^ ˆ

x^ y^ y^ z^ z x x^ y^ y^ z^ z

A^ a^ A^ a^ z^ zz

A a^ A a^ A a

A^ a^ A^ a^

A a^ A a^ A a

=^ ⋅^ =^ φ φφ A a^ A^ A

⋅^ +^ + = ⋅ = ⋅^ +^ + = ⋅ =

(^

) (^

) ˆ^ ˆ^

ˆ^ ˆ^ ˆ
ˆ^ ˆ^
ˆ^ ˆ^ ˆ

x^ xx^ r ˆ

rz^

z y^ yy^

r^ rz^

z

A^ a^ A^ a^ z^ zz

A a^ A a^ A a

A^ a^ A^ a

A a^ A a^

A a

A^ a^ A^ A

φ^ φ φ^ φ =^ ⋅^ =^ ⋅^

+^ +
=^ ⋅^ =^ ⋅^
+^ +
=^ ⋅^ =