Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

EEE 224 ELECTROMAGNETIC THEORY: Spherical Coordinate Systems, Lecture notes of Electromagnetism and Electromagnetic Fields Theory

This document informs about electromagnetism

Typology: Lecture notes

2019/2020

Uploaded on 05/20/2020

arda-koktaas
arda-koktaas 🇺🇸

10 documents

1 / 19

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
1
EEE 224 ELECTROMAGNETIC THEORY
Spherical
Coordinate Systems
METU -
NCC
Assist. Prof. Dr. Özlem Özgün
Office :S-144
Phone :661 2972
E-mail :ozozgun@metu.edu.tr
Web :http://www.metu.edu.tr/~ozozgun/
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13

Partial preview of the text

Download EEE 224 ELECTROMAGNETIC THEORY: Spherical Coordinate Systems and more Lecture notes Electromagnetism and Electromagnetic Fields Theory in PDF only on Docsity!

1

EEE 224 ELECTROMAGNETIC THEORY

Spherical

METU -^ Coordinate Systems

NCC

Assist. Prof. Dr.

Özlem Özgün Office^

:^ S- Phone^

:^ 661 2972 E-mail^

:^ ozozgun@metu.edu.tr Web^

:^ http://www.metu.edu.tr/~ozozgun/

2

Cartesian Coordinates Cylindrical Coordinates Spherical Coordinates

P (x, y, z)^ P (R,^ θ

,^ φ) P (r,^ φ, z)

x

y z^ P(x,y,z)^ z^ r^ Φ x

y z^ P(r,

Φ, z) z^ θ^ R Φ

y x

P(R,^ θ,^

Useful in problemshaving rectangularsymmetry^ Useful in problemshaving cylindricalsymmetry Φ)^ Useful in problemshaving sphericalsymmetry r

Orthogonal Coordinate Systems

Alternative notation:

ρ^ is used for r. Alternative notation: r is used for R.

4

Spherical Coordinate System

5

Spherical Coordinate System

R:^ distance from the origin (i.e., similar to altitude).

(0≤R<

θ :^ angle formed with the z-axis (i.e., similar to latitude) (

θ ≤π).

φ :^ rotation angle around the z-axis

(i.e., similar to longitude).

(0≤ φ <

π). It is the same as the

coordinate

φ^ used in

Coordinate variables(u, u^1 cylindrical coords.

, u) = 23

(R,^

θ ,^ φ )

R^ Æ^ length θ^ ,^ φ^

Æ^ angle

R=3.

7

R^ = const.

φ^ = const.

Spherical Coordinate System

θ^ = const.

R-const surface: spherical surface θ -const surface: cone surface φ -const surface: semi-infinite plane

MOVIE^8

Spherical Coordinate System

In this movie,consider r as R in our case. Also, interchange

θ^ and^

φ.

10

Spherical Base (Unit) Vectors

ˆa^ : always points in the direction of increasing R ˆaθ ˆaφ

R, and is orthogonal to

theR-constant plane (spherical surface).^ : always points in the direction of increasing

θ , and is orthogonal to the

θ^ -constant plane

(cone surface). It is tangent to the sphere along the line of longitude.^ : always points in the direction of increasing

φ , and is orthogonal to the

φ^ -constant plane. It is tangent to the sphere along the line of latitude.

11

Spherical Base (Unit) Vectors

13

Vector

representation

in cylindrical coordinates:

ˆ^

ˆ^

R^ R

A^

A a^

A a^

A a

θ^ θ^

φ^ φ

=^

+^

Spherical Coordinate System

Be careful! To perform vector operations (e.g.,addition, dot product, position vector,etc), first convert sphericalcoordinates to cartesian coordinates.After doing the operations, transformthem back to the sphericalcoordinates. Reason:

θ^ and

φ^ are angles, not lengths.

14

The relationship between (x,y,z),

(r,^ φ

, z) and (R,

θ ,^ φ ) sin^

cos sin^

sin cossin x^ R y^ R z^ R r^ R

θ^

φ θ^

φ θ θ = = = =^ (^

) 2 2

2 1 2 2 2

cos^1 tan^ /

R^

x^ y

z z x^ y

z y^ x θ φ

=^ +^ − −

⎜^

=^

⎜^

+^ +

⎝^

Transformation between Spherical, Cylindrical

and Cartesian Coordinates

x

y

P R z

r

cos z^ R θ=

sin r^ R^

θ

x

y sin

y^ r^

=

cos x^ r^

φ

16 ˆ ar r

z 0

ˆ az

ˆ aR ˆ a θ θ

P^ θ θ R

ˆ^ ˆ^

sin ˆ^ ˆ^

cos ˆ^ ˆ^

cos ˆ^ ˆ^ r sin a^ aR a^ azR a^ ar^ θ a^ azθ

θ θ θ θ ⋅^ = ⋅^ = ⋅^ = ⋅^ =^

ˆ ax x

y 0

ˆ ay

ˆ ar ˆ a^ φ^ φ

φ φ^ P^ x y^ r

ˆ^

ˆ^

ˆ cos^

sin ˆ^

ˆ^

ˆ sin^

cos x ˆ^ ˆ

r y

r a z^ z

a

a

a

a

a

a^ a

φ φ φ

φ φ

φ =^

− =^

=

Remember:

ˆ^ ˆ^

sin^ cos ˆ^ ˆ^

sin^ sin ˆ^ ˆ^

cos^ cos ˆ^ ˆ^ x cos^ sin

a^ aR a^ ayR a^ ax^ θ a^ ayθ

θ^ φ θ^ φ θ^ φ θ^ φ

⋅^ = ⋅^ = ⋅^ = ⋅^ =

Transformation between Spherical and Cartesian Coordinates

17

Transformation between Spherical

and Cartesian Coordinates

The relationship between A

,A, Ax y

and Az

,A, AR θ

φ

sin^ cos^

cos^ cos

sin sin^ sin^

cos^ sin^

cos cos^

sin^

0

x^

R

A^ y z

A

A^

A

A^

θ A φ

θ^ φ^

θ^ φ^

φ

θ^ φ^

θ^ φ^

φ θ

θ

⎡^ ⎤−

⎡^ ⎤^ ⎡

⎤ ⎢^ ⎥

⎢^ ⎥^ ⎢

=^

⎢^ ⎥

⎢^ ⎥^ ⎢

⎥ ⎢^ ⎥

⎢^ ⎥^ ⎢

⎥ − ⎣^ ⎦^ ⎣

⎦ ⎣^ ⎦

sin^ cos sin^

sin^ cos cos^ cos

cos^

sin^ sin sin^

cos^

0

R^

x y z

A^

A

A^

A

A^

A

θ φ

θ^ φ^

θ^ φ^

θ θ^ φ^

θ^ φ^

θ φ

φ

⎡^ ⎤^ ⎡

⎤ ⎡^ ⎤

⎢^ ⎥^ ⎢

⎥ ⎢^ ⎥

=^

⎢^ ⎥^ ⎢

⎥ ⎢^ ⎥

⎢^ ⎥^ ⎢

⎥ ⎢^ ⎥

−⎣

⎦ ⎣^ ⎦

⎣^ ⎦

ˆ^

ˆ^

ˆ^

ˆ^

x^ x^

y^ y^

z^ z R^ R A^ A a

A a

A a A^ A a

A a

Aa θ θ^ φ^

φ

=^

+^

=^

+^

(^

) (^

) (^

)

ˆ^
ˆ^
ˆ^
ˆ^
ˆ^
ˆ^
ˆ^
ˆ^
ˆ^
ˆ^
ˆ^
ˆ^

r

r^ x^

x^ y^

y^ z^

z

R^

x^ x^

y^ y^

z^ z x^ x^

y^ y^

z^ z

A^ a^

A^ a^

A a^

A a^

A a

A^ a^

A^ a^

A a^

A a^

A a

A^ a^

A^ a^

A a^

A a^

A a

θ^ θ

θ φ^ φ

φ =^ ⋅^

=^ ⋅^
+^
=^ ⋅^
=^ ⋅^
+^
=^ ⋅^
=^ ⋅^
+^

(^

) (^

) (^

)

ˆ^
ˆ^
ˆ^
ˆ^ ˆ
ˆ^
ˆ^
ˆ^
ˆ^ ˆ
ˆ^
ˆ^
ˆ^
ˆ^ ˆ

x^ x

x^ R^

R

y^ y

y^ R^

R

z^ z

z^ R^

R

A^ a^

A^ a^

A a^

A a^ A a

A^ a^

A^ a^

A a^

A a^ A a

A^ a^

A^ a^

A a^

θ^ θ^ A a^ A a φ^ φ θ^ θ^ φ^ φ θ^ θ^ φ^ φ

=^ ⋅^
=^ ⋅^
+^
=^ ⋅^
=^ ⋅^
+^
=^ ⋅^
=^ ⋅^
+^

19

NEXT LECTURE: Differential Length

Line Integral