
































Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Concept: Let’s allow the placement of the integration points to vary such that we further increase the degree of the polynomial we can integrate exactly for a given number of integration points. Gauss Quadrature, Gauss Legendre Formulae, Hermite Interpolation Formulae, Cubic Hermite Interpolating Function, Two Point Gauss Legendre Integration, Newton Cotes, Integration Points
Typology: Slides
1 / 40
This page cannot be seen from the preview
Don't miss anything!
CE 341/441 - Lecture 19 - Fall 2004
p. 19.
f
x (
x d
x
S x
h w
' o^
f
o
w
f
^1
w
f
N
f
0
f
1
f
2
f
N
h
= x
0
x
s
x
1
x
2
= x
N
x
E
closed formula
w
i
x
i
CE 341/441 - Lecture 19 - Fall 2004
p. 19.
→
→
→
- Concept: Let’s allow the placement of the integration points to vary such that we
- In fact we can integrate an
th
th
th
th
CE 341/441 - Lecture 19 - Fall 2004
p. 19.
⇒
w
o
x
o
f
x (
Ax
x
S
x
E
f
x (
x d
1
w
o
f
x
o
(
f
x (
Ax
x d
1
w
o
Ax
o
CE 341/441 - Lecture 19 - Fall 2004
p. 19.
⇒
x
2 ----^2
Bx
1
1
w
o
Ax
o
A x
o
w
o
B w
o
x
o
w
o
w
o
x
o
w
o
f^0
f(x)
x
0
-
+
CE 341/441 - Lecture 19 - Fall 2004
p. 19.
⇒
⇒
Ax
3
Bx
2
Cx
x d
1
w
o
Ax
(^3) o
Bx
2 o
C x
o
w
1
Ax
31
Bx
21
C x
1
Ax
4
Bx
3 3
C x
2
Dx
1
w
o
Ax
3 o
Bx
2 o
C x
o
w
1
Ax
(^31)
Bx
21
C x
1
A w
o
x
3 o
w
1
x
31
B w
o
x
2 o
w
1
x
21
C w
o
x
o
w
1
x
1
D w
o
w
1
w
o
x
3 o
w
1
x
31
w
o
x
2 o
w
1
x
21
w
o
x
o
w
1
x
1
w
o
w
1
CE 341/441 - Lecture 19 - Fall 2004
p. 19.
→
w
o
w
1
x
o
x
1
CE 341/441 - Lecture 19 - Fall 2004
p. 19.
,
x
i
i
w
i
Exact for
polynomials of
degree
CE 341/441 - Lecture 19 - Fall 2004
p. 19.
→
→
⇒
⇒
→
th
th
CE 341/441 - Lecture 19 - Fall 2004
p. 19.
p
N
x (
x
x
o
x
x
1
x
x
N
l
iN
x (
p
N
x (
x
x
i
p
1 (
)
N
x
i
(
i
t
i
x (
x
x
i
l
iN
1 (
)
x
i
(
s
i
x (
x
x
i
CE 341/441 - Lecture 19 - Fall 2004
p. 19.
89
⇒
⇒
f
0
f
1
x
0
=
−
1
x
1
= +
f
0
(1) f
1
(1)
x
p
N
x (
p
1
x (
x
x
o
x
x
1
p
1 (
)
1
x (
x
x
o
x
x
1
CE 341/441 - Lecture 19 - Fall 2004
p. 19.
i
l
11
x (
x
x
o
x
x
1
x
x
1
x
1
x
o
x
o
x
1
l
11
x (
x
l
1 (
)
o
1
x (
l
1 (
)
11
x (
CE 341/441 - Lecture 19 - Fall 2004
p. 19.
⇒
⇒
⇒
⇒
t
i
x (
t
o
x (
x
x
o
l
1 (
)
o
1
x
o
(
t
o
x (
x
t
o
x (
x
t
1
x (
x
x
1
l
1 (
)
11
x
1
t
1
x (
x
t
1
x (
x
s
i
x (
s
o
x (
x
s
1
x (
x
CE 341/441 - Lecture 19 - Fall 2004
p. 19.
⇒
⇒
⇒
⇒
β
i
x (
β
o
x (
s
o
x (
l
o
1
x (
l
o
1
x (
β
o
x (
x
x
x
β
o
x (
x
x
2
x
3
β
1
x (
s
1
x (
l
11
x (
l
11
x (
β
1
x (
x
x
x
β
1
x (
x
x
2
x
3
g x
α
o
x (
f
o
α
1
x (
f
^1
β
o
x (
f
1 (
)
o
β
1
x (
f
1 (
)
1
CE 341/441 - Lecture 19 - Fall 2004
p. 19.
β
1
α
(x)i
α
1
(x)
α
0
(x)
x
β
(x)i
β
0
(x)
β
1
(x)
x
α
i
(x)
α
1
(x)
α
0
(x)
(1)
(1)
(1)
x
β
i
(x) (1)
β
0
(1)
(1)
x
α
i^
x
j
(
δ
ij
α
1 (
)
i^
x
j
(
β
i
x
j
(
β
1 (
)
i^
x
j
(
δ
ij