









Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Just a little boost, hopefully this helps
Typology: Study notes
1 / 15
This page cannot be seen from the preview
Don't miss anything!
(2) Parts of amino acid= carboxyl group (COOH) on one end, amino group on the other end (NH2), central carbon and variable R group (can be hydrophobic or hydrophilic) which determines chemical properties. (3) Protein Folding- shape determines function; primary= a.a. chain; secondary= beta pleated sheet or alpha helix( hydrogen bonds); tertiary=globular; folds in on itself (disulfide bridges, hydrogen bonds, hydrophobic interactions; ionic bonding); quaternary= more than one polypeptide. (4) Uses- protein carriers in cell membrane, antibodies, hemoglobin, enzymes, most hormones d. Nucleic acids – C, H, O, N (1) Monomer= nucleotide, 2 = dinucleotide, 2 or more polynucleotide (2) Nucleotide made up of sugar, phosphate and base (3) Used to store genetic information (4) DNA is double stranded, has deoxyribose, A, G, C, T (5) RNA is single stranded, has ribose, A, G, C, U (6) mRNA- copies genetic message; rRNA- attaches mRNA and makes up ribosomes (most common);tRNA- carries amino acids; DNA- carries genetic code
j. Plant cells have pressure related to cell wall and vacuole; turgor pressure k. Hypertonic (high solute), hypotonic (low solute), and isotonic solutions(equal concentration) l. High surface area : volume ratio increases rate at which food can be taken in a waste expelled
water; occurs in mitochondria; NADH is electron carrier used b. Glycolysis (1) occurs in cytoplasm; anaerobic (2) rearranges the bonds in glucose molecules, releasing free energy to form ATP from ADP through substrate-level phosphorylation resulting in the production of pyruvate. c. Kreb’s cycle (1) occurs in mitochondrial matrix (2) also called the citric acid cycle (3) occurs twice per molecule of glucose (4) Pyruvate is oxidized further and carbon dioxide is released ; ATP is synthesized from ADP and inorganic phosphate via substrate level phosphorylation and electrons are captured by coenzymes (NAD+ and FAD). (5) NADH and FADH2 carry electrons to the electron transport chain. d. Electron Transport Chain and Chemiosmosis (1) The electron transport chain captures electrons, pumping H+ions into the intermembrane space of the mitochondria. (2) Electrons are accepted by O 2 molecule forming H 2 O (3) Concentration of H+^ builds up within inner-membrane space lowering the pH and ions rush through ATP synthase into the mitochondrial matrix. Rush of ions ``spins” ATP synthase protein, causing ADP and Pi to join forming ATP by oxidative phosphorylation
l. Meiosis (occurs after interphase) takes diploid cells and reduces the chromosome number to haploid. 2n 1n. m. During meiosis, homologous chromosomes are paired (one from mom and one from dad) and line up in the center of the cell randomly. The homologues are pulled apart and separated in meiosis I. A second division occurs in which the duplicated chromosomes are pulled apart. n. Variation occurs in gametes during “crossing over,” and fertilization because of all possible combinations of homologous chromosomes aligning during metaphase I.
Vocabulary anaphase autosomal cancer cell cycle cell division centrioles chromosome codominance crossing over crossover frequency cyclin-dependent kinase cytokinesis diploid (2N) dominant F1/F2 Generation fertilization gamete genotype haploid (1N) heterozygous homozygous incomplete dominance independent assortment homologous chromosomes independent assortment interphase meiosis metaphase mitosis nuclear division phenotype prophase recessive recombination segregation sex chromosome sex-linked somatic cell synapsis synthesis telophase CONCEPT 5 – MOLECULAR GENETICS
f. If in ER then: polypeptide is released into ER, then to Golgi complex, vesicle to cell membrane, then exocytosis (may be given signals for exit/destination) g. Free ribosomes typically make products for the cell and are not exported
g. A receptor protein recognizes signal molecules, causing the receptor protein’s shape to change, which initiates transduction of the signal. Ex. G-protein linked receptors, ligand-gated ion channels, tyrosine kinase receptors. h. Signal transduction is the process by which a signal is converted to a cellular response. Signaling cascades relay signals from receptors to cell targets, often amplifying the incoming signals, with the result of appropriate responses by the cell. i. Second messengers inside of cells are often essential to the function of the cascade. j. Many signal transduction pathways include: Protein modifications or phosphorylation cascades in which a series of protein kinases add a phosphate group to the next protein in the cascade sequence.
(3) No mutations (4) Random mating (5) No natural selection c. Equations (1) p = the frequency of dominant alleles in a population (2) q = the frequency of recessive alleles in a population (3) p 2 = the frequency of homozygous dominant individuals in a population (4) q^2 = the frequency of homozygous recessive individuals in a population (5) 2pq=the frequency of heterozygous individuals in a population (6) p + q = 1 (7) p^2 + 2pq + q^2 = 1
genetic material.