Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

General Chemistry Term 2, Cheat Sheet of Chemistry

Cheat sheet for general chemistry 1 and 2

Typology: Cheat Sheet

2024/2025

Uploaded on 03/05/2025

autumn-madison
autumn-madison 🇺🇸

2 documents

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Heat Capacity (C) in J/C
C=q
T
Specific Heat (c) in J/gC
c=q
m T
Percent Abundance:
1. [(xmass element1) + ((1-x)mass element2)]
solve for x
2. Element1 percent abundance = (x 100) (e.g. 0.4 x 100 =
4%)
3. Element2 percent abundance = [(1 – x) 100]
Number of moles:
¿mol=mass of element
molar mass
# mol from concentration
and volume:
(
mol
L
)
L given
(
mol desired ¿eq¿ ¿mol given ¿eq ¿
)
Enthalpy (H) example:
100 mL of 1.00 M Ba(NO3)2, mixed with 100 mL of 1.00 M Na2SO4, both with initial
temperature of 25C and final temperature of 28.1C. Heat capacity of 4.18 J/gC
and density of 1.0 g/mL. Change in enthalpy for formation of 1 mole of sodium
nitrate?
Ba(N O3)2+Na2SO4 BaS O 4+2NaN O3
1. (100 mL + 100 mL) = 200 mL
2.
m=200 mL
(
1.0 g
mL
)
=200 g 103=¿0.2 g
3.
qsolution=
(
0.2 g
)
(
4.18 J
g
)
(
28.1 25
)
=¿2.59
4.
qsoution=−qreaction , e . g . q reaction=−2.59 kJ
5.
H =qreaction
ntotal
=¿2.59 kJ
0.2 mol 13 kJ /mol
Change in Heat example:
25 g glucose, 40 g oxygen, molar mass glucose: 180.16 g/mol
C6H12 O6+6O26CO2+6H2O H =2480 kJ
1.
2.
40 g O2
(
1mol O2
32 g
)
(
6mol C O2
6mol O2
)
=1.25 mol C O2
3.
q= H n C6H12O6=¿
(
2480 kJ
)
(
0.139 mol C6H12 O6
)
=344 kJ
Number of atoms/molecules:
¿molecules=
(
mass of element
molar mass
)
(6.022 x1023 )
Volume of product with pressure example
300.15 K, 0.951 atm, 8.88 g Ga, V of H?
2Ga
(
s
)
+6HCl
(
aq
)
2Ga Cl3
(
aq
)
+3H2(g)
8.88 g Ga
(
1mol Ga
69.72 g Ga
)
=0.127 mol Ga
0.127 mol Ga
(
3mol H
2mol Ga
)
=0.19 mol H
V=nRT
P
V=
(0.19 mol H )
(
0.08206 atmL
molK
)
(300.15 K)
0.951 atm 4.9 L
Steric Number (central atom only):
# double bonds + # single bonds + # lone pairs
Example: SF4 = S has 4 single bonds + 1 lone pair = 5 steric number
~ trigonal bipyramidal and seesaw ~
ENAmount Bond
0.4
<
0 Pure
covalent
0.4-
1.8
intermediat
e
Polar
covalent
1.8
>
large ionic
Sigma and Pi Bonds
Single bond: 1 sigma bond, 0 pi
bonds
Double bond: 1 sigma bond, 1 pi
bond
Triple bond: 1 sigma bond, 2 pi
bonds
Percent composition:
%element=
(
mass of element grams
mass of sample/compound grams
)
100
Atomic number (Z): # of protons
Mass number (A): # of neutrons +
protons
Number of Neutrons: A – Z
Atomic charge:
(# of protons) – (# of electrons)
COMMON POLYATOMIC COMPOUNDS
Compound Name Compound Formula
Acetate C2H3O2-
Carbonate CO32-
Hydrogen carbonate HCO3-
Hydroxide OH-
Nitrite NO2-
Nitrate NO3-
Chromate CrO42-
Dichromate Cr2O72-
Phosphate PO43-
Hydrogen phosphate HPO42-
Dihydrogen phosphate H2PO4-
Ammonium NH4+
Hypochlorite ClO-
Chlorite ClO2-
Chlorate ClO3-
Perchlorate ClO4-
Permanganate MnO4-
Sulfite SO32-
Hydrogen sulfite HSO3
Sulfate SO42-
Hydrogen sulfate HSO4-
Cyanide CN-
Peroxide O22-
Theoretical Yield
mol desired=mol given
(
mol desired ¿eq¿ ¿ mol given ¿eq ¿
)
** the smallest moles between the reactants to produce specified product will be the limiting
reactant and the highest moles is the excess reactant ** ~ multiply by the desired compounds
molar mass to convert to grams prn
Percent Yield
Acid+Base Salt +H2O
ex: HCl + NaOH
Water + NaCl
1. mass start
(
g
)
=theoretical yield
(
1mol
molar mass
(
g
)
)
(
mol start with
mol produced reaction
)
(
molar mass(g)
)
2. % yield =
(
mass start with
(
g
)
theoretical yield
(
g
)
)
100
Excess Reactant
1. theoretical yield
(
mol excess reactant ¿eq¿¿ mol product ¿eq¿
)
=mol reactant used
2. mol reactant start mol reactant used=mol excess
g/L prior to precipitate
g
(
precip
)
(
g precip
molar mass precip
)
(
mol o . g .
mol precip
)
¿
Ionic Compound:
Metal + Non-metal
(2 or more elements: -ide)
(3 or more elements: -ate)
Molecular Compound:
Non-metals
DIATOMIC MOLECULES
H2 O2 N2 F2 Cl2 Br2 I2
POLYATOMIC MOLECULES:
P4 Se8 S8
Steric
#
# bonding
pairs
# lone
pairs
Electron
geometry
Molecular
geometry
Hybridization
2 2 0 Linear linear sp
3 3 0 Trigonal
planar
Trigonal
planar
sp2
3 2 1 Trigonal
planar
Bent sp2
4 4 0 Tetrahedral Tetrahedral sp3
4 3 1 Tetrahedral Trigonal
pyramidal
sp3
4 2 2 Tetrahedral Bent sp3
5 5 0 Trigonal
bipyramidal
Trigonal
bipyramidal
sp3d
5 4 1 Trigonal
bipyramidal
seesaw sp3d
5 3 2 Trigonal
bipyramidal
t-shaped sp3d
5 2 3 Trigonal
bipyramidal
linear sp3d
6 6 0 Octahedral Octahedral sp3d2
6 5 1 Octahedral Square
pyramidal
sp3d2
6 4 2 Octahedral Square
planar
sp3d2
Compound/ion
Type
Compound/Ion Exceptions
Soluble Ionic
Compounds
N H 4
+¿¿
None
Soluble Cations
Li+¿, Na+¿, K+¿, Rb+¿, Cs+¿¿¿¿¿¿
None
Soluble Anions
Cl¿, Br¿,I ¿¿ ¿¿
Ag+¿, Hg2
2+¿,Pb2+¿ ¿ ¿¿
Soluble Anions
F¿¿
Group 2 metals and
Pb2+¿, Fe3+¿ ¿ ¿
Soluble Ionic
Compounds
C2H3O2
¿, HC O3
¿,N O 3
¿,ClO3
¿¿¿¿¿
None
Insoluble Exceptions
C O3
2¿,Cr O 4
2¿,P O4
3¿,S2¿¿ ¿¿¿
Group 1 cations and
NH 4
+¿¿
OH¿ ¿
Group 1 cations and
Ba2+¿ ¿
Heat (q) in J or kJ Change in Enthalpy (
H)
q=mc T
qsolution=−qreaction
+q = endothermic reaction
(heat absorbed)
-q = exothermic reaction
(heat produced)
C12 H22 O11+8KCl O312 C O 2+11H2O+8KCl
1. Convert to moles to find limiting reactant
2. Using
H =q
n
find the enthalpy change
3. Multiply enthalpy by the coefficient in front of the limiting reactant
(e.g.
8 H = H
for one mole of sucrose to react with
8 moles of potassium chlorate)
Internal Energy (u) (e.g. function)
u=q+w
ureaction= usurroundings
“Two-fold increase” in enthalpy:
Original:
H2
(
g
)
+
(
1
2
)
O2
(
g
)
H 2O
(
l
)
H =−286 kJ
Two-fold increase: (multiply eq and
H
by 2)
2H2
(
g
)
+O2
(
g
)
2H2O
(
l
)
H =
(
286 kJ 2
)
=572 kJ
Enthalpy (H): (e.g. function)
H=u+PV
H =q
n
+
H
= endothermic reaction
-
H
= exothermic
reaction
“Two-fold decrease” in enthalpy:
Original:
H2
(
g
)
+
(
1
2
)
O2
(
g
)
H 2O
(
l
)
H =−286 kJ
Two-fold decrease: (multiply eq and
H
by 1/2)
1
2H2
(
g
)
+1
4O
2
(
g
)
1
2H2O
(
l
)
H =
(
286
2kJ
)
=143 kJ
Internal Energy (u) with
constant pressure/volume:
H = u
w=−P V
e.g.
bomb calorimeter
Standard Enthalpy of Combustion
Volume
(
L
)
(
103mL
1L
)
(
density
(
g
mL
)
)
(
1mole
molar mass
(
g
)
)
=n
HC n=−q
HC:enthalpy of combustion
Enthalpy Principles: Standard Enthalpy of Formation example
Breaking chemical bond = endothermic (e.g. adding O gas to solid
carbon)
Forming chemical bond = exothermic (e.g. formation of CO2)
Enthalpy from Bond Energy
H =
[
bonds brokenformed
]
H =[
(
C O+2HH
)
−(3CH+CO+OH)]
Reaction Types Basic Formulas
Combustion
A+B CO2+H2O
Decomposition
AB A +B
Synthesis/combination
A+B AB
Single replacement
A+BC AC +B
Double replacement
AB+CD AD +BC
pf2

Partial preview of the text

Download General Chemistry Term 2 and more Cheat Sheet Chemistry in PDF only on Docsity!

Heat Capacity (C) in J/C

C=

q

∆ T

Specific Heat (c) in J/gC

c=

q

m ∆ T

Percent Abundance:

  1. [(xmass element 1 ) + ((1-x)mass element 2 )]  solve for x
  2. Element 1

percent abundance = (x  100) (e.g. 0.4 x 100 =

4%)

  1. Element 2

percent abundance = [(1 – x)  100]

Number of moles:

¿ mol=

mass of element

molar mass

# mol from concentration

and volume:

mol

L

∙ L given ∙ ( mol desired ¿ eq¿¿ mol given ¿ eq¿)

Enthalpy (H) example:

100 mL of 1.00 M Ba(NO 3 ) 2 , mixed with 100 mL of 1.00 M Na 2 SO 4 , both with initial

temperature of 25C and final temperature of 28.1C. Heat capacity of 4.18 J/gC

and density of 1.0 g/mL. Change in enthalpy for formation of 1 mole of sodium

nitrate?

Ba( N O

3

2

  • Na

2

SO

4

→ BaS O

4

  • 2 NaN O

3

  1. (100 mL + 100 mL) = 200 mL

m= 200 mL ∙

1.0 g

mL

= 200 g ∙ 10

− 3

=¿ 0.2 g

q

solution

=( 0.2 g) ∙

J

g

q

soution

=−q

reaction

, e. g. q

reaction

=−2.59 kJ

∆ H =

q

reaction

n

total

−2.59 kJ

0.2 mol

≈− 13 kJ /mol

Change in Heat example:

25 g glucose, 40 g oxygen, molar mass glucose: 180.16 g/mol

C

6

H

12

O

6

+ 6 O

2

→ 6 CO

2

+ 6 H

2

O ∆ H =− 2480 kJ

25 g C

6

H

12

O

6

(

1 mol C

6

H

12

O

6

180.16 g

)

(

6 mol C O

2

1 mol C

6

H

12

O

6

)

=0.83 mol C O

2

←limit

40 g O

2

(

1 mol O

2

32 g

)

(

6 mol C O

2

6 mol O

2

)

=1.25 mol C O

2

q=∆ H ∙ n

C 6

H 12

O 6

=¿ (− 2480 kJ ) ∙

0.139 mol C

6

H

12

O

6

=− 344 kJ

Number of atoms/molecules:

¿ molecules=

mass of element

molar mass

( 6.022 x 10

23

Volume of product with pressure example

300.15 K, 0.951 atm, 8.88 g Ga, V of H?

2 Ga ( s) + 6 HCl ( aq ) → 2 Ga Cl

3

( aq ) + 3 H

2

( g )

8.88 g Ga ∙

1 mol Ga

69.72 g Ga

=0.127 mol Ga

0.127 mol Ga ∙

3 mol H

2 mol Ga

=0.19 mol H

V =

nRT

P

V =

( 0.19 mol H )∙

atmL

molK

∙( 300.15 K )

0.951 atm

≈ 4.9 L

Steric Number (central atom only):

double bonds + # single bonds + # lone pairs

Example: SF 4 = S has 4 single bonds + 1 lone pair = 5 steric number

~ trigonal bipyramidal and seesaw ~

EN Amount Bond

<

 0 Pure

covalent

0.4-

intermediat

e

Polar

covalent

large ionic

Sigma and Pi Bonds

Single bond: 1 sigma bond, 0 pi

bonds

Double bond: 1 sigma bond, 1 pi

bond

Triple bond: 1 sigma bond, 2 pi

bonds

Percent composition:

% element =

mass of element ∈grams

mass of sample / compound ∈grams

Atomic number (Z): # of protons

Mass number (A): # of neutrons +

protons

Number of Neutrons: A – Z

Atomic charge:

(# of protons) – (# of electrons)

COMMON POLYATOMIC COMPOUNDS

Compound Name Compound Formula

Acetate C 2

H 3

O 2

Carbonate CO 3

2-

Hydrogen carbonate HCO 3

Hydroxide OH

Nitrite NO 2

Nitrate NO 3

Chromate CrO 4

2-

Dichromate Cr 2 O 7

2-

Phosphate PO 4

3-

Hydrogen phosphate HPO 4

2-

Dihydrogen phosphate H 2

PO 4

Ammonium NH 4

Hypochlorite ClO

Chlorite ClO 2

Chlorate ClO 3

Perchlorate ClO 4

Permanganate MnO 4

Sulfite SO 3

2-

Hydrogen sulfite HSO 3

Sulfate SO 4

2-

Hydrogen sulfate HSO 4

Cyanide CN

Peroxide O 2

2-

Theoretical Yield

mol desired=mol given ∙ ( mol desired ¿ eq¿¿ mol

** the smallest moles between the reactants to produce specified product will be the limiting

reactant and the highest moles is the excess reactant ** ~ multiply by the desired compounds

molar mass to convert to grams prn

Percent Yield

Acid +Base → Salt + H

2

O ex: HCl + NaOHWater + NaCl

  1. mass start ( g)=theoretical yield ∙

(

1 mol

molar mass

  1. % yield=

(

mass start with ( g)

theoretical yield ( g)

)

Excess Reactant

  1. theoretical yield ∙ ( mol excess reactant ¿ eq¿¿ m
  2. mol reactant start−mol reactant used=mol ex

g/L prior to precipitate

g

precip

g precip

molar mass precip

mol o. g.

mol precip

Ionic Compound:

Metal + Non-metal

(2 or more elements: -ide)

(3 or more elements: -ate)

Molecular Compound:

Non-metals

DIATOMIC MOLECULES

H 2

O 2

N 2

F 2

Cl 2

Br 2

I 2

POLYATOMIC MOLECULES:

P 4

Se 8

S 8

Steric

#

# bonding

pairs

# lone

pairs

Electron

geometry

Molecular

geometry

Hybridization

2 2 0 Linear linear sp

3 3 0 Trigonal

planar

Trigonal

planar

sp

2

3 2 1 Trigonal

planar

Bent sp

2

4 4 0 Tetrahedral Tetrahedral sp

3

4 3 1 Tetrahedral Trigonal

pyramidal

sp

3

4 2 2 Tetrahedral Bent sp

3

5 5 0 Trigonal

bipyramidal

Trigonal

bipyramidal

sp

3

d

5 4 1 Trigonal

bipyramidal

seesaw sp

3

d

5 3 2 Trigonal

bipyramidal

t-shaped sp

3

d

5 2 3 Trigonal

bipyramidal

linear sp

3

d

6 6 0 Octahedral Octahedral sp

3

d

2

6 5 1 Octahedral Square

pyramidal

sp

3

d

2

6 4 2 Octahedral Square

planar

sp

3

d

2

Compound/ion

Type

Compound/Ion Exceptions

Soluble Ionic

Compounds

N H

4

+¿ ¿

None

Soluble Cations

Li

+¿ , Na

+¿ , K

+¿ , Rb

+¿ ,Cs

+¿ ¿ ¿ ¿

¿

¿

None

Soluble Anions

Cl

−¿ , Br

−¿ , I

−¿ ¿

¿

¿

Ag

+¿ , Hg 2

2 +¿ , Pb

2 +¿ ¿

¿

¿

Soluble Anions

F

−¿ ¿

Group 2 metals and

Pb

2 +¿ , Fe

3 +¿ ¿

¿

Soluble Ionic

Compounds

C

2

H

3

O

2

−¿ , HC O 3

−¿ , N O 3

−¿ , Cl O 3

−¿ ¿ ¿

¿

¿

None

Insoluble Exceptions

C O

3

2 −¿ ,Cr O

4

2 −¿ , P O 4

3 −¿ , S

2 −¿ ¿ ¿

¿

¿

Group 1 cations and

NH

4

+¿ ¿

OH

−¿ ¿

Group 1 cations and

Ba

2 +¿ ¿

Heat (q) in J or kJ

Change in Enthalpy (

H)

q=mc ∆ T

q

solution

=−q

reaction

+q = endothermic reaction

(heat absorbed)

-q = exothermic reaction

(heat produced)

C

12

H

22

O

11

  • 8 KCl O

3

→ 12 C O

2

+ 11 H

  1. Convert to moles to find limiting reactant
  2. Using ∆ H =

q

n

find the enthalpy change

  1. Multiply enthalpy by the coefficient in front of the limiting reactant

(e.g.

8 ∙ ∆ H =∆ H

for one mole of sucrose to react with

8 moles of potassium chlorate)

Internal Energy (u) (e.g. function)

∆ u=q+w

−∆ u

reaction

=∆ u

surroundings

“Two-fold increase” in enthalpy:

Original:

H

2

( g) +

O

2

( g) → H

2

O ( l ) ∆ H =− 28

Two-fold increase: (multiply eq and

∆ H

by 2)

2 H

2

( g) +O

2

( g) → 2 H

2

O ( l ) ∆ H =(− 28

Enthalpy (H): (e.g. function)

H =u+ PV

∆ H =

q

n

+ ∆ H

= endothermic reaction

-

∆ H

= exothermic

reaction

“Two-fold decrease” in enthalpy:

Original:

H

2

( g) +

O

2

( g) → H

2

O ( l ) ∆ H =− 28

Two-fold decrease: (multiply eq and

∆ H

by 1/2)

H

2

( g) +

O

2

( g) →

H

2

O ( l ) ∆ H =

Internal Energy (u) with

constant pressure/volume:

∆ H =∆ u

w=−P ∆ V e.g.

bomb calorimeter

Standard Enthalpy of Combustion

Volume

L

(

3

mL

1 L

)

(

density

g

mL

)

∆ H

C

∙ n=−q

∆ H

C

: enthalpy of combustion

Breaking chemical bond = endothermic (e.g. adding O gas to solid

carbon)

Forming chemical bond = exothermic (e.g. formation of CO2)

Enthalpy from Bond Energy

∆ H =[ bonds broken−formed ]

∆ H =[

C ≡O+ 2 H −H

−( 3 C−H +C−O+O−H )]

Reaction Types Basic Formulas

Combustion

A +B →CO

2

+ H

2

O

Decomposition

AB → A +B

Synthesis/combination

A +B → AB

Single replacement

A +BC → AC +B

Double replacement

AB+CD → AD+BC

Femto- 10

-

Pico- 10

-

Nano- 10

-

Micro- 10

-

Milli - 10

-

Centi – 10

-

Deci- 10

-

1 fs = 10

s 1 ps = 10

s 1 ns = 10

s 1 s = 10

s 1 ms = 10

s 1 cs = 10

s 1 ds = 10

s

1 fm = 10

m 1 pm = 10

m 1 nm = 10

m 1 m = 10

m 1 mm = 10

m 1 cm = 10

m 1 dm = 10

m

1 fg = 10

g 1 pg = 10

g 1 ng = 10

g 1 g = 10

g 1 mg = 10

g 1 cg = 10

g 1 dg = 10

g

1 fL = 10

L 1 pL = 10

L 1 nL = 10

L 1 L = 10

L 1 mL = 10

L 1 cL = 10

L 1 dL = 10

L

1 fHz = 10

Hz 1 pHz = 10

Hz 1 nHz = 10

Hz 1 Hz = 10

Hz 1 mHz = 10

Hz 1 cHz = 10

Hz

1 dHz = 10

Hz

1 fW = 10

W 1 pW = 10

W 1 nW = 10

W 1 W = 10

HW 1 mW = 10

W 1 cW = 10

W

1 dW = 10

W

1 fmol = 10

mol

1 pmol = 10

mol

1 nmol = 10

mol

1 mol = 10

Hmol

1 mmol = 10

mol

1 cmol = 10

mol

1 dmol = 10

mol

Kilo- 10

3

Mega- 10

6

Giga- 10

9

Tera- 10

12

Diff Powers

1 ks = 10

3

s 1 Ms = 10

6

s 1 Gs = 10

9

s 1 Ts = 10

12

s 1 cm

2

= 10

m

2

1 km = 10

3

m 1 Mm = 10

6

m 1 Gm = 10

9

m 1 Tm = 10

12

m 1 cm

3

= 10

m

3

1 kg = 10

3

g 1 Mg = 10

6

g 1 Gg = 10

9

g 1 Tg = 10

12

g 1 m

3

= 10

6

mL

1 kL = 10

3

L 1 ML = 10

6

L 1 GL = 10

9

L 1 TL = 10

12

L 1 m

3

= 10

3

L

1 kHz = 10

3

Hz 1 MHz = 10

6

Hz

1 GHz = 10

9

Hz

1 THz = 10

12

Hz

Time

1 kW = 10

3

W 1 MW = 10

6

W

1 GW = 10

9

W 1 TW = 10

12

W

1 hr = 3600

s

1 kmol = 10

3

mol

1 Mmol = 10

6

mol

1 Gmol = 10

9

mol

1 Tmol = 10

12

mol

1 yr = 8760

hr

1 cal =

4.184 J

NUMBER PREFIX

1 Mono-

2 Di-

3 Tri-

4 Tetra-

5 Penta-

6 Hexa-

7 Hepta-

8 Octa-

9 Nona-

10 Deca-

TEMPERATURE CONVERSIONS

T

T

T

(T

Valence electrons:

outermost s & p orbitals with highest n

Electron configuration neutral atom:

configuration on periodic table

Electron configuration cation (removes):

Li = [He] 2s

1

vs Li

= [He]

Electron configuration anion (adds):

O = [He] 2s

2

sp

4

vs O

2-

= [He] 2s

2

2p

6

or [Ne

Pressure with Area

(1 Pa = N/m

2

)

P=

F

A

Graham’s Law of Effusion

rate of effusion

molar ma

Hydrostatic Pressure

P=hρgh=height, ρ=density, g=gravity (9.81)

Example of Graham’s Law of Effusion (same conditions)

Rate of nitrogen gas: 79 mL/s, rate of SO 2

?

Rate

1

Rate

2

M

2

M

1

79 mL/ s

Rate

2

64.0628 g/mol

28.0134 g/mol

Root mean square

speed

v

rms

3 RT

M

R=8.314, M= molar mass

Amonton’s Law

P=kT

P

1

T

1

P

2

T

2

k= gas constant, T= temp in

Kelvin

Avg KE

KE

avg

= 3 / 2 RT

KE

avg

= 1 / 2 M

v

rms

2

vrms and Effusion Rate:

effusion

vrms

M =

3 RT

v

rms

2

3 RT

v

rate

1

rate

2

v

rms 1

v

rms 2

M

2

M

1

Charles’s Law

V =kT

V

1

T

1

V

2

T

2

k= gas constant, T= temp in

Kelvin

Rate of

Effusion with

time

t

2

t

1

M

2

M

1

Rate of Effusion with time example:

t 1 =8 hr, He and Xe, t Xe?

t

2

8 hr

g

mol

X

g

mol

Boyle’s Law

P=

k

V

P

1

V

1

=P

2

V

2

k= gas constant, V= volume

Rate of Effusion to deflate balloon of Xe to ½ it’s size:

t 1 =8 hr (after 8 hrs, 3/2 deflation He), He and Xe, t Xe?

Rate

1

Rate

2

g

mol

Xe

g

mol

He

Rate

1

=( 8 hr ) ∙

= 12 hours

Rate

2

=( 12 hr ) ∙ ( 2.65)= 32 hou

Van der Waals Pressure

P=

nRT

(V −n ∙ b )

n

2

∙ a

V

2

a = strength of attraction, b = size of

molecules

Avogadro’s Law

V =kn

V

1

n

1

V

2

n

2

k= gas constant, V= volume,

n= number of moles

Molar mass from rate of effusion:

Unknown gas effuses 1.66 times faster than CO 2

g

mol

M

2

Ideal Gas Law

PV =nRT

Empirical and Molecular Formula of Gas From Molar

Mass

85.7% carbon, 14.3% hydrogen, 1.56 g cyclopropane, 1.

Dalton’s Law of partial pressure

P

Total

=P

1

+ P

2

+ P

n

Example of Dalton’s Law

10 L, 0.0025 mol H 2 , 0.001 mol He, 0.0003 mol

Ne, 308.15 K

P

1

( 0.0025 mol H )( 0.

atmL

molK

)(308.15 K )

10 L

P

2

( 0.001 mol He )( 0.

atmL

molK

)( 308.15 K )

10 L

P

3

( 0.0003 mol Ne )( 0.

atmL

molK

)(308.15 K )

10 L

P

Total

=P

1

+ P

2

+ P

3

Mole Fraction

X =

n

n

total

n=

moles of individual atom

Osmotic Pressure

Π =MRT R=

0.08206, M=mol/L,

T= temp in kelvin

Partial pressure using mole fractions

2.83 moles of O 2

, 8.41 moles N 2

O, 192 kPa

total pressure

Percent volume changes

T

1

= 309 K ,T

2

=324.15 K , 10 % decrease∈ pressure

P

1

V

1

T

1

P

2

V

2

T

2

Molality :

mol

solute

kg

solvent

Boiling point :

T

b

=K

b

m

Mass of solute from temperature

changes:

  1. m=

T

f 1

−T

f 2

K

f

mole s

solute

¿ ions

∙ kg

solvent

=moles

solute