

Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Cheat sheet for general chemistry 1 and 2
Typology: Cheat Sheet
1 / 2
This page cannot be seen from the preview
Don't miss anything!
Heat Capacity (C) in J/ C
q
Specific Heat (c) in J/g C
c=
q
m ∆ T
Percent Abundance:
percent abundance = (x 100) (e.g. 0.4 x 100 =
4%)
percent abundance = [(1 – x) 100]
Number of moles:
¿ mol=
mass of element
molar mass
# mol from concentration
and volume:
mol
∙ L given ∙ ( mol desired ¿ eq¿¿ mol given ¿ eq¿)
Enthalpy ( H) example:
100 mL of 1.00 M Ba(NO 3 ) 2 , mixed with 100 mL of 1.00 M Na 2 SO 4 , both with initial
temperature of 25C and final temperature of 28.1C. Heat capacity of 4.18 J/gC
and density of 1.0 g/mL. Change in enthalpy for formation of 1 mole of sodium
nitrate?
Ba( N O
3
2
2
4
→ BaS O
4
3
(100 mL + 100 mL) = 200 mL
m= 200 mL ∙
1.0 g
mL
= 200 g ∙ 10
− 3
=¿ 0.2 g
q
solution
=( 0.2 g) ∙
g ℃
q
soution
=−q
reaction
, e. g. q
reaction
=−2.59 kJ
q
reaction
n
total
−2.59 kJ
0.2 mol
≈− 13 kJ /mol
Change in Heat example:
25 g glucose, 40 g oxygen, molar mass glucose: 180.16 g/mol
6
12
6
2
2
2
O ∆ H =− 2480 kJ
25 g C
6
12
6
(
1 mol C
6
12
6
180.16 g
)
(
6 mol C O
2
1 mol C
6
12
6
)
=0.83 mol C O
2
←limit
40 g O
2
(
1 mol O
2
32 g
)
(
6 mol C O
2
6 mol O
2
)
=1.25 mol C O
2
q=∆ H ∙ n
C 6
H 12
O 6
=¿ (− 2480 kJ ) ∙
0.139 mol C
6
12
6
=− 344 kJ
Number of atoms/molecules:
¿ molecules=
mass of element
molar mass
( 6.022 x 10
23
Volume of product with pressure example
300.15 K, 0.951 atm, 8.88 g Ga, V of H?
2 Ga ( s) + 6 HCl ( aq ) → 2 Ga Cl
3
( aq ) + 3 H
2
( g )
8.88 g Ga ∙
1 mol Ga
69.72 g Ga
=0.127 mol Ga
0.127 mol Ga ∙
3 mol H
2 mol Ga
=0.19 mol H
nRT
( 0.19 mol H )∙
atmL
molK
0.951 atm
Steric Number (central atom only):
Example: SF 4 = S has 4 single bonds + 1 lone pair = 5 steric number
~ trigonal bipyramidal and seesaw ~
EN Amount Bond
<
0 Pure
covalent
0.4-
intermediat
e
Polar
covalent
large ionic
Sigma and Pi Bonds
Single bond: 1 sigma bond, 0 pi
bonds
Double bond: 1 sigma bond, 1 pi
bond
Triple bond: 1 sigma bond, 2 pi
bonds
Percent composition:
% element =
mass of element ∈grams
mass of sample / compound ∈grams
Atomic number (Z): # of protons
Mass number (A): # of neutrons +
protons
Number of Neutrons: A – Z
Atomic charge:
(# of protons) – (# of electrons)
COMMON POLYATOMIC COMPOUNDS
Compound Name Compound Formula
Acetate C 2
H 3
O 2
Carbonate CO 3
2-
Hydrogen carbonate HCO 3
Hydroxide OH
Nitrite NO 2
Nitrate NO 3
Chromate CrO 4
2-
Dichromate Cr 2 O 7
2-
Phosphate PO 4
3-
Hydrogen phosphate HPO 4
2-
Dihydrogen phosphate H 2
PO 4
Ammonium NH 4
Hypochlorite ClO
Chlorite ClO 2
Chlorate ClO 3
Perchlorate ClO 4
Permanganate MnO 4
Sulfite SO 3
2-
Hydrogen sulfite HSO 3
Sulfate SO 4
2-
Hydrogen sulfate HSO 4
Cyanide CN
Peroxide O 2
2-
Theoretical Yield
mol desired=mol given ∙ ( mol desired ¿ eq¿¿ mol
** the smallest moles between the reactants to produce specified product will be the limiting
reactant and the highest moles is the excess reactant ** ~ multiply by the desired compounds
molar mass to convert to grams prn
Percent Yield
Acid +Base → Salt + H
2
O ex: HCl + NaOH Water + NaCl
(
1 mol
molar mass
(
mass start with ( g)
theoretical yield ( g)
)
Excess Reactant
g/L prior to precipitate
g
precip
g precip
molar mass precip
mol o. g.
mol precip
Ionic Compound:
Metal + Non-metal
(2 or more elements: -ide)
(3 or more elements: -ate)
Molecular Compound:
Non-metals
DIATOMIC MOLECULES
H 2
O 2
N 2
F 2
Cl 2
Br 2
I 2
POLYATOMIC MOLECULES:
P 4
Se 8
S 8
Steric
#
# bonding
pairs
# lone
pairs
Electron
geometry
Molecular
geometry
Hybridization
2 2 0 Linear linear sp
3 3 0 Trigonal
planar
Trigonal
planar
sp
2
3 2 1 Trigonal
planar
Bent sp
2
4 4 0 Tetrahedral Tetrahedral sp
3
4 3 1 Tetrahedral Trigonal
pyramidal
sp
3
4 2 2 Tetrahedral Bent sp
3
5 5 0 Trigonal
bipyramidal
Trigonal
bipyramidal
sp
3
d
5 4 1 Trigonal
bipyramidal
seesaw sp
3
d
5 3 2 Trigonal
bipyramidal
t-shaped sp
3
d
5 2 3 Trigonal
bipyramidal
linear sp
3
d
6 6 0 Octahedral Octahedral sp
3
d
2
6 5 1 Octahedral Square
pyramidal
sp
3
d
2
6 4 2 Octahedral Square
planar
sp
3
d
2
Compound/ion
Type
Compound/Ion Exceptions
Soluble Ionic
Compounds
4
+¿ ¿
None
Soluble Cations
Li
+¿ , Na
+¿ , K
+¿ , Rb
+¿ ,Cs
+¿ ¿ ¿ ¿
¿
¿
None
Soluble Anions
Cl
−¿ , Br
−¿ , I
−¿ ¿
¿
¿
Ag
+¿ , Hg 2
2 +¿ , Pb
2 +¿ ¿
¿
¿
Soluble Anions
−¿ ¿
Group 2 metals and
Pb
2 +¿ , Fe
3 +¿ ¿
¿
Soluble Ionic
Compounds
2
3
2
−¿ , HC O 3
−¿ , N O 3
−¿ , Cl O 3
−¿ ¿ ¿
¿
¿
None
Insoluble Exceptions
3
2 −¿ ,Cr O
4
2 −¿ , P O 4
3 −¿ , S
2 −¿ ¿ ¿
¿
¿
Group 1 cations and
4
+¿ ¿
−¿ ¿
Group 1 cations and
Ba
2 +¿ ¿
Heat (q) in J or kJ
Change in Enthalpy (
H)
q=mc ∆ T
q
solution
=−q
reaction
+q = endothermic reaction
(heat absorbed)
-q = exothermic reaction
(heat produced)
12
22
11
3
2
q
n
find the enthalpy change
(e.g.
8 ∙ ∆ H =∆ H
for one mole of sucrose to react with
8 moles of potassium chlorate)
Internal Energy (u) (e.g. function)
∆ u=q+w
−∆ u
reaction
=∆ u
surroundings
“Two-fold increase” in enthalpy:
Original:
2
( g) +
2
( g) → H
2
O ( l ) ∆ H =− 28
Two-fold increase: (multiply eq and
∆ H
by 2)
2
( g) +O
2
( g) → 2 H
2
O ( l ) ∆ H =(− 28
Enthalpy (H): (e.g. function)
H =u+ PV
q
n
= endothermic reaction
-
∆ H
= exothermic
reaction
“Two-fold decrease” in enthalpy:
Original:
2
( g) +
2
( g) → H
2
O ( l ) ∆ H =− 28
Two-fold decrease: (multiply eq and
∆ H
by 1/2)
2
( g) +
2
( g) →
2
O ( l ) ∆ H =
Internal Energy (u) with
constant pressure/volume:
∆ H =∆ u
w=−P ∆ V e.g.
bomb calorimeter
Standard Enthalpy of Combustion
Volume
(
3
mL
)
(
density
g
mL
)
C
∙ n=−q
C
: enthalpy of combustion
Breaking chemical bond = endothermic (e.g. adding O gas to solid
carbon)
Forming chemical bond = exothermic (e.g. formation of CO2)
Enthalpy from Bond Energy
Reaction Types Basic Formulas
Combustion
2
2
Decomposition
Synthesis/combination
Single replacement
Double replacement
Femto- 10
-
Pico- 10
-
Nano- 10
-
Micro- 10
-
Milli - 10
-
Centi – 10
-
Deci- 10
-
1 fs = 10
s 1 ps = 10
s 1 ns = 10
s 1 s = 10
s 1 ms = 10
s 1 cs = 10
s 1 ds = 10
s
1 fm = 10
m 1 pm = 10
m 1 nm = 10
m 1 m = 10
m 1 mm = 10
m 1 cm = 10
m 1 dm = 10
m
1 fg = 10
g 1 pg = 10
g 1 ng = 10
g 1 g = 10
g 1 mg = 10
g 1 cg = 10
g 1 dg = 10
g
1 fL = 10
L 1 pL = 10
L 1 nL = 10
L 1 L = 10
L 1 mL = 10
L 1 cL = 10
L 1 dL = 10
L
1 fHz = 10
Hz 1 pHz = 10
Hz 1 nHz = 10
Hz 1 Hz = 10
Hz 1 mHz = 10
Hz 1 cHz = 10
Hz
1 dHz = 10
Hz
1 fW = 10
W 1 pW = 10
W 1 nW = 10
W 1 W = 10
HW 1 mW = 10
W 1 cW = 10
W
1 dW = 10
W
1 fmol = 10
mol
1 pmol = 10
mol
1 nmol = 10
mol
1 mol = 10
Hmol
1 mmol = 10
mol
1 cmol = 10
mol
1 dmol = 10
mol
Kilo- 10
3
Mega- 10
6
Giga- 10
9
Tera- 10
12
Diff Powers
1 ks = 10
3
s 1 Ms = 10
6
s 1 Gs = 10
9
s 1 Ts = 10
12
s 1 cm
2
= 10
m
2
1 km = 10
3
m 1 Mm = 10
6
m 1 Gm = 10
9
m 1 Tm = 10
12
m 1 cm
3
= 10
m
3
1 kg = 10
3
g 1 Mg = 10
6
g 1 Gg = 10
9
g 1 Tg = 10
12
g 1 m
3
= 10
6
mL
1 kL = 10
3
L 1 ML = 10
6
L 1 GL = 10
9
L 1 TL = 10
12
L 1 m
3
= 10
3
L
1 kHz = 10
3
Hz 1 MHz = 10
6
Hz
1 GHz = 10
9
Hz
1 THz = 10
12
Hz
Time
1 kW = 10
3
W 1 MW = 10
6
W
1 GW = 10
9
W 1 TW = 10
12
W
1 hr = 3600
s
1 kmol = 10
3
mol
1 Mmol = 10
6
mol
1 Gmol = 10
9
mol
1 Tmol = 10
12
mol
1 yr = 8760
hr
1 cal =
4.184 J
NUMBER PREFIX
1 Mono-
2 Di-
3 Tri-
4 Tetra-
5 Penta-
6 Hexa-
7 Hepta-
8 Octa-
9 Nona-
10 Deca-
TEMPERATURE CONVERSIONS
℉
℃
℃
℉
Valence electrons:
outermost s & p orbitals with highest n
Electron configuration neutral atom:
configuration on periodic table
Electron configuration cation (removes):
Li = [He] 2s
1
vs Li
= [He]
Electron configuration anion (adds):
O = [He] 2s
2
sp
4
vs O
2-
= [He] 2s
2
2p
6
or [Ne
Pressure with Area
(1 Pa = N/m
2
)
Graham’s Law of Effusion
rate of effusion ∝
√
molar ma
Hydrostatic Pressure
P=hρgh=height, ρ=density, g=gravity (9.81)
Example of Graham’s Law of Effusion (same conditions)
Rate of nitrogen gas: 79 mL/s, rate of SO 2
?
Rate
1
Rate
2
2
1
79 mL/ s
Rate
2
64.0628 g/mol
28.0134 g/mol
Root mean square
speed
v
rms
R=8.314, M= molar mass
Amonton’s Law
P=kT
1
1
2
2
k= gas constant, T= temp in
Kelvin
Avg KE
avg
avg
v
rms
2
vrms and Effusion Rate:
effusion
∝
vrms
v
rms
2
v
rate
1
rate
2
v
rms 1
v
rms 2
2
1
Charles’s Law
V =kT
1
1
2
2
k= gas constant, T= temp in
Kelvin
Rate of
Effusion with
time
t
2
t
1
2
1
Rate of Effusion with time example:
t 1 =8 hr, He and Xe, t Xe?
t
2
8 hr
g
mol
g
mol
Boyle’s Law
k
1
1
2
2
k= gas constant, V= volume
Rate of Effusion to deflate balloon of Xe to ½ it’s size:
t 1 =8 hr (after 8 hrs, 3/2 deflation He), He and Xe, t Xe?
Rate
1
Rate
2
g
mol
Xe
g
mol
He
Rate
1
=( 8 hr ) ∙
= 12 hours
Rate
2
=( 12 hr ) ∙ ( 2.65)= 32 hou
Van der Waals Pressure
nRT
(V −n ∙ b )
n
2
∙ a
2
a = strength of attraction, b = size of
molecules
Avogadro’s Law
V =kn
1
n
1
2
n
2
k= gas constant, V= volume,
n= number of moles
Molar mass from rate of effusion:
Unknown gas effuses 1.66 times faster than CO 2
g
mol
2
Ideal Gas Law
PV =nRT
Empirical and Molecular Formula of Gas From Molar
Mass
85.7% carbon, 14.3% hydrogen, 1.56 g cyclopropane, 1.
Dalton’s Law of partial pressure
Total
1
2
n
Example of Dalton’s Law
10 L, 0.0025 mol H 2 , 0.001 mol He, 0.0003 mol
Ne, 308.15 K
1
( 0.0025 mol H )( 0.
atmL
molK
2
( 0.001 mol He )( 0.
atmL
molK
3
( 0.0003 mol Ne )( 0.
atmL
molK
Total
1
2
3
Mole Fraction
n
n
total
n=
moles of individual atom
Osmotic Pressure
0.08206, M=mol/L,
T= temp in kelvin
Partial pressure using mole fractions
2.83 moles of O 2
, 8.41 moles N 2
O, 192 kPa
total pressure
Percent volume changes
1
2
=324.15 K , 10 % decrease∈ pressure
1
1
1
2
2
2
Molality :
mol
solute
kg
solvent
Boiling point :
b
b
m
Mass of solute from temperature
changes:
f 1
f 2
f
mole s
solute
¿ ions
∙ kg
solvent
=moles
solute