Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Grade-11-Mathematics-Functions-and-their-Graphs.pdf, Study notes of Mathematics

In this topic you will : Revise the seven basic functions. 1. Unit. •. Investigate the effect of parameters. Unit 2. •. Generate new gr.

Typology: Study notes

2021/2022

Uploaded on 08/01/2022

hal_s95
hal_s95 🇵🇭

4.4

(652)

10K documents

1 / 61

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Functions
and their
Graphs Grade 11
CAPS
Mathematics
Series
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d

Partial preview of the text

Download Grade-11-Mathematics-Functions-and-their-Graphs.pdf and more Study notes Mathematics in PDF only on Docsity!

Functions

and their

Graphs

Grade 11

CAPS

Mathematics

Series

Outcomes for this Topic

In this topic you will :

Revise the seven basic functions.

Unit 1

Investigate the effect of parameters.

Unit 2

Generate new gr
U
aphs.
nit 3

Seven Basic Functions

  1. The parabola function defined by yx^2.
  2. The exponential function define d by yax.
  3. The sine function defined b y y  s ni x.

We revise the following basic functions:

  1. The straight line function defined by yx.
    1. The cosine function defined b y y  c so x.

3. The hyperbolic function define

d by y.

x

7. The tangent function defined b y y  t na x.

Plot these points on Cartesian Plane.

Utilize at least the following three ordered pairs:

1 0 1 1 0 1

x y

 

Function defined by yx

Draw best fit graph.

Domain 

Range 

Plot these points on Cartesian Plane and draw graph.

Utilize at least the following six ordered pairs:

1 Function defined by y x

Horizontal Asymptote:
Defined by y  0
Vertical Asymptote:
Defined by x  0

2 1 1 1 1 2 2 2 1 1 2 2 1 1 2 2

x

y

  

  

Domain  (^)  x : x  (^0) 

Range  (^)  y : y  (^0) 

Symmetry Lines: yxy   x

Plot these points on Cartesian Plane and draw best fit graph.

Function defined by ; 0; 1

x ya aa

Horizontal Asymptote:
Defined by y  0

Select 2 and utilize at least the

following five ordered pairs:

a

2 1 0 1 2 (^1 1 1 2 ) 4 2

x y

  2

x

y

Domain  Range  (^)  0;

Plot points and sketch y  sin x

360 270 180 90 0 90 180 270 360 0 1 0 1 0 1 0 1 0

x y

Period is 360 Range   1;1

Domain    ; 

Amplitude is 1

Finding points on y  cos x

Utilize CAST diagram and Unit Circle

Complete table:

x y

Finding points on y  tan x

Utilize information in the following three diagrams:

Complete tables:

360 270 180 90 0 90 180 270 360 0 0 0 0 0 315 225 135 45 45 135 225 315 1 1 1 1 1 1 1 1

x y x y

                                

Plot points and sketch y  tan x

360 270 180 90 0 90 180 270 360 0 0 0 0 0 315 225 135 45 45 135 225 315 1 1 1 1 1 1 1 1

x y x y

                                

  • • • •

Period is 180

Domain  x : x  90   k 180 ; k

Vertical Asymptotes Range  where x  90   k 180 ; k

Tutorial 1 Problem 1: Suggested Solution

  1. Sketch 3 if (^)  2;2 y   x x  

2 1 0 1 2 9 3 1 1 1 3 9

x y

 

Horizontal Asymptote:

Defined by y  0

D   2;2

R  0;9

Tutorial 1 Problem 2: Suggested Solution

2. Sketch y  sin x if x   0 ;360 

x y

D   0 ;360 

Tutorial 1 Problem 4: Suggested Solution

  1. Sketch y  tan x if x   90 ;90  

90 45 0 45 90 1 0 1

x y

         

D   90 ;90  

Investigate

Effect of

Parameters

Unit 2

Grade 11

CAPS

Mathematics

Series