Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Heat transfer formula sheet, Cheat Sheet of Heat and Mass Transfer

Heat transfor equations sheet include heat conduction heat convection rate equations, conservation of energy, internal flow, general lumped capacitance analysis.

Typology: Cheat Sheet

2021/2022

Uploaded on 02/07/2022

selvam_0p3
selvam_0p3 🇺🇸

4.3

(15)

233 documents

1 / 31

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
1
HEAT TRANSFER EQUATION SHEET
Heat Conduction Rate Equations (Fourier's Law)
Heat Flux: 𝑞𝑞𝑥𝑥
′′=−𝑘𝑘𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥 𝑊𝑊
𝑚𝑚2
k
: Thermal Conductivity 𝑊𝑊
𝑚𝑚∙𝑘𝑘
Heat Rate: 𝑞𝑞𝑥𝑥= 𝑞𝑞𝑥𝑥
′′𝐴𝐴𝑐𝑐 𝑊𝑊
Ac
: Cross-Sectional Area
Heat Convection Rate Equations (Newton's Law of Cooling)
Heat Flux: 𝑞𝑞′′ =(𝑇𝑇𝑠𝑠𝑇𝑇) 𝑊𝑊
𝑚𝑚2
h
: Convection Heat Transfer Coefficient 𝑊𝑊
𝑚𝑚2∙𝐾𝐾
Heat Rate: 𝑞𝑞=ℎ𝐴𝐴𝑠𝑠(𝑇𝑇𝑠𝑠𝑇𝑇) 𝑊𝑊
As
: Surface Area 𝑚𝑚2
Heat Radiation emitted ideally by a blackbody surface has a surface emissive power: 𝐸𝐸𝑏𝑏= 𝜎𝜎 𝑇𝑇𝑠𝑠4 𝑊𝑊
𝑚𝑚2
Heat Flux emitted: 𝐸𝐸= 𝜀𝜀𝜎𝜎𝑇𝑇𝑠𝑠4 𝑊𝑊
𝑚𝑚2 where ε is the emissivity with range of 0 𝜀𝜀 1
and 𝜎𝜎= 5.67 × 10−8 𝑊𝑊
𝑚𝑚2𝐾𝐾4 is the Stefan-Boltzmann constant
Irradiation: 𝐺𝐺𝑎𝑎𝑏𝑏𝑠𝑠 = 𝛼𝛼𝐺𝐺 but we assume small body in a large enclosure with 𝜀𝜀=𝛼𝛼 so that 𝐺𝐺= 𝜀𝜀 𝜎𝜎 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
4
Net Radiation heat flux from surface: 𝑞𝑞𝑠𝑠𝑎𝑎𝑑𝑑
′′ =𝑞𝑞
𝐴𝐴= 𝜀𝜀𝐸𝐸𝑏𝑏(𝑇𝑇𝑠𝑠) 𝛼𝛼𝐺𝐺= 𝜀𝜀𝜎𝜎(𝑇𝑇𝑠𝑠4 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
4)
Net radiation heat exchange rate: 𝑞𝑞𝑠𝑠𝑎𝑎𝑑𝑑 = 𝜀𝜀𝜎𝜎𝐴𝐴𝑠𝑠(𝑇𝑇𝑠𝑠4 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
4) where for a real surface 0≤𝜀𝜀≤1
This can ALSO be expressed as: 𝑞𝑞𝑠𝑠𝑎𝑎𝑑𝑑 = 𝑠𝑠𝐴𝐴(𝑇𝑇𝑠𝑠 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠) depending on the application
where 𝑠𝑠 is the radiation heat transfer coefficient which is: 𝑠𝑠= 𝜀𝜀𝜎𝜎(𝑇𝑇𝑠𝑠+ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠)(𝑇𝑇𝑠𝑠2+ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
2) 𝑊𝑊
𝑚𝑚2∙𝐾𝐾
TOTAL heat transfer from a surface: 𝑞𝑞=𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝑞𝑞𝑠𝑠𝑎𝑎𝑑𝑑 =ℎ𝐴𝐴𝑠𝑠(𝑇𝑇𝑠𝑠𝑇𝑇)+𝜀𝜀𝜎𝜎𝐴𝐴𝑠𝑠(𝑇𝑇𝑠𝑠4 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
4) 𝑊𝑊
Conservation of Energy (Energy Balance)
𝐸𝐸󰇗𝑖𝑖𝑐𝑐+𝐸𝐸󰇗𝑔𝑔 𝐸𝐸󰇗𝑐𝑐𝑠𝑠𝑜𝑜 = 𝐸𝐸󰇗𝑠𝑠𝑜𝑜 (Control Volume Balance) ; 𝐸𝐸󰇗𝑖𝑖𝑐𝑐 𝐸𝐸󰇗𝑐𝑐𝑠𝑠𝑜𝑜 = 0 (Control Surface Balance)
where 𝐸𝐸󰇗𝑔𝑔 is the conversion of internal energy (chemical, nuclear, electrical) to thermal or mechanical energy, and
𝐸𝐸󰇗𝑠𝑠𝑜𝑜 = 0 for steady-state conditions. If not steady-state (i.e., transient) then 𝐸𝐸󰇗𝑠𝑠𝑜𝑜 =𝜌𝜌𝜌𝜌𝑐𝑐𝑝𝑝𝑑𝑑𝑑𝑑
𝑑𝑑𝑜𝑜
Heat Equation (used to find the temperature distribution)
Heat Equation (Cartesian): 𝜕𝜕
𝜕𝜕𝑥𝑥�𝑘𝑘𝜕𝜕𝑑𝑑
𝜕𝜕𝑥𝑥+ 𝜕𝜕
𝜕𝜕𝜕𝜕�𝑘𝑘𝜕𝜕𝑑𝑑
𝜕𝜕𝜕𝜕 + 𝜕𝜕
𝜕𝜕𝜕𝜕�𝑘𝑘𝜕𝜕𝑑𝑑
𝜕𝜕𝜕𝜕+ 𝑞𝑞󰇗=𝜌𝜌𝑐𝑐𝑝𝑝𝜕𝜕𝑑𝑑
𝜕𝜕𝑜𝑜
If 𝑘𝑘 is constant then the above simplifies to: 𝜕𝜕2𝑑𝑑
𝜕𝜕𝑥𝑥2+ 𝜕𝜕2𝑑𝑑
𝜕𝜕𝜕𝜕2+ 𝜕𝜕2𝑑𝑑
𝜕𝜕𝜕𝜕2+𝑞𝑞󰇗
𝑘𝑘=1
𝛼𝛼𝜕𝜕𝑑𝑑
𝜕𝜕𝑜𝑜 where 𝛼𝛼=𝑘𝑘
𝜌𝜌𝑐𝑐𝑝𝑝 is the thermal diffusivity
Heat Equation (Cylindrical): 1
𝑠𝑠𝜕𝜕
𝜕𝜕𝑠𝑠𝑘𝑘𝑘𝑘𝜕𝜕𝑑𝑑
𝜕𝜕𝑠𝑠+1
𝑠𝑠2𝜕𝜕
𝜕𝜕𝜕𝜕�𝑘𝑘𝜕𝜕𝑑𝑑
𝜕𝜕𝜕𝜕 + 𝜕𝜕
𝜕𝜕𝜕𝜕�𝑘𝑘𝜕𝜕𝑑𝑑
𝜕𝜕𝜕𝜕+ 𝑞𝑞󰇗=𝜌𝜌𝑐𝑐𝑝𝑝𝜕𝜕𝑑𝑑
𝜕𝜕𝑜𝑜
Heat Eqn. (Spherical): 1
𝑠𝑠2𝜕𝜕
𝜕𝜕𝑠𝑠�𝑘𝑘𝑘𝑘2𝜕𝜕𝑑𝑑
𝜕𝜕𝑠𝑠+1
𝑠𝑠2sin𝜃𝜃2𝜕𝜕
𝜕𝜕𝜕𝜕�𝑘𝑘𝜕𝜕𝑑𝑑
𝜕𝜕𝜕𝜕 + 1
𝑠𝑠2sin𝜃𝜃 𝜕𝜕
𝜕𝜕𝜃𝜃�𝑘𝑘sin 𝜃𝜃𝜕𝜕𝑑𝑑
𝜕𝜕𝜃𝜃+ 𝑞𝑞󰇗=𝜌𝜌𝑐𝑐𝑝𝑝𝜕𝜕𝑑𝑑
𝜕𝜕𝑜𝑜
Thermal Circuits
Plane Wall: 𝑅𝑅𝑜𝑜,𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 =𝐿𝐿
𝑘𝑘𝐴𝐴 Cylinder: 𝑅𝑅𝑜𝑜,𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 =ln𝑟𝑟2
𝑟𝑟1
2𝜋𝜋𝑘𝑘𝐿𝐿 Sphere: 𝑅𝑅𝑜𝑜,𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 =
(1
r11
r2)
4𝜋𝜋𝑘𝑘
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f

Partial preview of the text

Download Heat transfer formula sheet and more Cheat Sheet Heat and Mass Transfer in PDF only on Docsity!

HEAT TRANSFER EQUATION SHEET

Heat Conduction Rate Equations (Fourier's Law)

 Heat Flux: 𝑞𝑞

𝑥𝑥

′′

𝑑𝑑𝑑𝑑

𝑑𝑑𝑥𝑥

𝑊𝑊

𝑚𝑚

2

k : Thermal Conductivity

𝑊𝑊

𝑚𝑚∙𝑘𝑘

 Heat Rate: 𝑞𝑞

𝑥𝑥

𝑥𝑥

′′

𝑐𝑐

𝑊𝑊 A

c

: Cross-Sectional Area

Heat Convection Rate Equations (Newton's Law of Cooling)

 Heat Flux: 𝑞𝑞

′′

𝑠𝑠

𝑊𝑊

𝑚𝑚

2

h : Convection Heat Transfer Coefficient

𝑊𝑊

𝑚𝑚

2

∙𝐾𝐾

 Heat Rate: 𝑞𝑞 = ℎ𝐴𝐴

𝑠𝑠

𝑠𝑠

) 𝑊𝑊 A

s

: Surface Area 𝑚𝑚

2

Heat Radiation emitted ideally by a blackbody surface has a surface emissive power: 𝐸𝐸

𝑏𝑏

𝑠𝑠

4

𝑊𝑊

𝑚𝑚

2

 Heat Flux emitted: 𝐸𝐸 = 𝜀𝜀𝜎𝜎𝑇𝑇

𝑠𝑠

4

𝑊𝑊

𝑚𝑚

2

where ε is the emissivity with range of 0 ≤ 𝜀𝜀 ≤ 1

and 𝜎𝜎 = 5.67 × 10

𝑊𝑊

𝑚𝑚

2

𝐾𝐾

4

is the Stefan-Boltzmann constant

 Irradiation: 𝐺𝐺

𝑎𝑎𝑏𝑏𝑠𝑠

= 𝛼𝛼𝐺𝐺 but we assume small body in a large enclosure with 𝜀𝜀 = 𝛼𝛼 so that 𝐺𝐺 = 𝜀𝜀 𝜎𝜎 𝑇𝑇

𝑠𝑠𝑠𝑠𝑠𝑠

4

 Net Radiation heat flux from surface: 𝑞𝑞

𝑠𝑠𝑎𝑎𝑑𝑑

′′

𝑞𝑞

𝐴𝐴

𝑏𝑏

𝑠𝑠

𝑠𝑠

4

𝑠𝑠𝑠𝑠𝑠𝑠

4

 Net radiation heat exchange rate: 𝑞𝑞

𝑠𝑠𝑎𝑎𝑑𝑑

𝑠𝑠

𝑠𝑠

4

𝑠𝑠𝑠𝑠𝑠𝑠

4

) where for a real surface 0 ≤ 𝜀𝜀 ≤ 1

This can ALSO be expressed as: 𝑞𝑞 𝑠𝑠𝑎𝑎𝑑𝑑

𝑠𝑠

𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠

) depending on the application

where ℎ

𝑠𝑠

is the radiation heat transfer coefficient which is: ℎ

𝑠𝑠

𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠

𝑠𝑠

2

𝑠𝑠𝑠𝑠𝑠𝑠

2

𝑊𝑊

𝑚𝑚

2

∙𝐾𝐾

 TOTAL heat transfer from a surface: 𝑞𝑞 = 𝑞𝑞

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑠𝑠𝑎𝑎𝑑𝑑

𝑠𝑠

𝑠𝑠

𝑠𝑠

𝑠𝑠

4

𝑠𝑠𝑠𝑠𝑠𝑠

4

Conservation of Energy (Energy Balance)

𝑖𝑖𝑐𝑐

𝑔𝑔

𝑐𝑐𝑠𝑠𝑜𝑜

𝑠𝑠𝑜𝑜

(Control Volume Balance) ; 𝐸𝐸̇

𝑖𝑖𝑐𝑐

𝑐𝑐𝑠𝑠𝑜𝑜

= 0 (Control Surface Balance)

where 𝐸𝐸̇

𝑔𝑔

is the conversion of internal energy (chemical, nuclear, electrical) to thermal or mechanical energy, and

𝑠𝑠𝑜𝑜

= 0 for steady-state conditions. If not steady-state ( i.e. , transient) then 𝐸𝐸̇

𝑠𝑠𝑜𝑜

𝑝𝑝

𝑑𝑑𝑑𝑑

𝑑𝑑𝑜𝑜

Heat Equation (used to find the temperature distribution)

Heat Equation (Cartesian):

𝜕𝜕

𝜕𝜕𝑥𝑥

𝜕𝜕𝑑𝑑

𝜕𝜕𝑥𝑥

𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝑑𝑑

𝜕𝜕𝜕𝜕

𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝑑𝑑

𝜕𝜕𝜕𝜕

𝑝𝑝

𝜕𝜕𝑑𝑑

𝜕𝜕𝑜𝑜

If 𝑘𝑘 is constant then the above simplifies to:

𝜕𝜕

2

𝑑𝑑

𝜕𝜕𝑥𝑥

2

𝜕𝜕

2

𝑑𝑑

𝜕𝜕𝜕𝜕

2

𝜕𝜕

2

𝑑𝑑

𝜕𝜕𝜕𝜕

2

𝑞𝑞̇

𝑘𝑘

1

𝛼𝛼

𝜕𝜕𝑑𝑑

𝜕𝜕𝑜𝑜

where 𝛼𝛼 =

𝑘𝑘

𝜌𝜌𝑐𝑐

𝑝𝑝

is the thermal diffusivity

Heat Equation (Cylindrical):

1

𝑠𝑠

𝜕𝜕

𝜕𝜕𝑠𝑠

𝜕𝜕𝑑𝑑

𝜕𝜕𝑠𝑠

1

𝑠𝑠

2

𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝑑𝑑

𝜕𝜕𝜕𝜕

𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝑑𝑑

𝜕𝜕𝜕𝜕

𝑝𝑝

𝜕𝜕𝑑𝑑

𝜕𝜕𝑜𝑜

Heat Eqn. (Spherical):

1

𝑠𝑠

2

𝜕𝜕

𝜕𝜕𝑠𝑠

2

𝜕𝜕𝑑𝑑

𝜕𝜕𝑠𝑠

1

𝑠𝑠

2

sin 𝜃𝜃

2

𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝑑𝑑

𝜕𝜕𝜕𝜕

1

𝑠𝑠

2

sin 𝜃𝜃

𝜕𝜕

𝜕𝜕𝜃𝜃

�𝑘𝑘 sin 𝜃𝜃

𝜕𝜕𝑑𝑑

𝜕𝜕𝜃𝜃

𝑝𝑝

𝜕𝜕𝑑𝑑

𝜕𝜕𝑜𝑜

Thermal Circuits

Plane Wall: 𝑅𝑅

𝑜𝑜,𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑

𝐿𝐿

𝑘𝑘𝐴𝐴

Cylinder: 𝑅𝑅

𝑜𝑜,𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑

ln�

𝑟𝑟

𝑟𝑟

2𝜋𝜋𝑘𝑘𝐿𝐿

Sphere: 𝑅𝑅

𝑜𝑜,𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑

(

1

r

1

r

)

4𝜋𝜋𝑘𝑘

𝑜𝑜,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

1

ℎ𝐴𝐴

𝑜𝑜,𝑠𝑠𝑎𝑎𝑑𝑑

1

𝑟𝑟

𝐴𝐴

_____________________________________________________________________________________________________________

General Lumped Capacitance Analysis

𝑠𝑠

′′

𝑠𝑠,ℎ

𝑔𝑔̇

[

4

𝑠𝑠𝑠𝑠𝑠𝑠

4

)]

𝑠𝑠

( 𝑐𝑐,𝑠𝑠

)

Radiation Only Equation

𝜌𝜌𝜌𝜌𝑐𝑐

4 𝜀𝜀 𝐴𝐴

𝑠𝑠,𝑟𝑟

𝜎𝜎 𝑑𝑑

𝑠𝑠𝑠𝑠𝑟𝑟

3

�ln �

𝑑𝑑

𝑠𝑠𝑠𝑠𝑟𝑟

+𝑑𝑑

𝑑𝑑

𝑠𝑠𝑠𝑠𝑟𝑟

−𝑑𝑑

� − ln �

𝑑𝑑

𝑠𝑠𝑠𝑠𝑟𝑟

+𝑑𝑑

𝑖𝑖

𝑑𝑑

𝑠𝑠𝑠𝑠𝑟𝑟

−𝑑𝑑

𝑖𝑖

� + 2 �tan

𝑑𝑑

𝑑𝑑

𝑠𝑠𝑠𝑠𝑟𝑟

� − tan

𝑑𝑑

𝑖𝑖

𝑑𝑑

𝑠𝑠𝑠𝑠𝑟𝑟

Heat Flux, Energy Generation, Convection, and No Radiation Equation

𝑑𝑑−𝑑𝑑

− �

𝑏𝑏

𝑎𝑎

𝑑𝑑

𝑖𝑖

− 𝑑𝑑

− �

𝑏𝑏

𝑎𝑎

= exp(−𝑎𝑎𝑑𝑑) ; where 𝑎𝑎 = �

ℎ𝐴𝐴

𝑠𝑠,𝑐𝑐

𝜌𝜌𝜌𝜌𝑐𝑐

� and 𝑏𝑏 =

𝑞𝑞

𝑠𝑠

′′

𝐴𝐴

𝑠𝑠,ℎ

  • 𝐸𝐸̇

𝑔𝑔

𝜌𝜌𝜌𝜌𝑐𝑐

Convection Only Equation

𝑖𝑖

𝑖𝑖

= exp �− �

𝑠𝑠

𝑜𝑜

1

ℎ𝐴𝐴

𝑠𝑠

𝑜𝑜

𝑜𝑜

𝑖𝑖

� 1 − exp �−

𝑜𝑜

𝜏𝜏

𝑡𝑡

𝑚𝑚𝑎𝑎𝑥𝑥

𝑖𝑖

ℎ𝐿𝐿

𝑐𝑐

𝑘𝑘

If there is an additional resistance either in series or in parallel, then replace ℎ with 𝑈𝑈 in all the above lumped capacitance

equations, where

1

𝑅𝑅

𝑡𝑡

𝐴𝐴

𝑠𝑠

𝑊𝑊

𝑚𝑚

2

∙𝐾𝐾

� ; 𝑈𝑈 = overall heat transfer coefficient, 𝑅𝑅

𝑜𝑜

= total resistance, 𝐴𝐴

𝑠𝑠

= surface area.

Convection Heat Transfer

𝜌𝜌𝜌𝜌𝐿𝐿

𝑐𝑐

𝜇𝜇

𝜌𝜌𝐿𝐿

𝑐𝑐

𝜈𝜈

[Reynolds Number] ; 𝑁𝑁𝑁𝑁

�𝐿𝐿

𝑐𝑐

𝑘𝑘

𝑓𝑓

[Average Nusselt Number]

where 𝜌𝜌 is the density, 𝜌𝜌 is the velocity, 𝐿𝐿 𝑐𝑐

is the characteristic length, 𝜇𝜇 is the dynamic viscosity, 𝜈𝜈 is the kinematic viscosity, 𝑚𝑚̇ is the mass flow

rate, ℎ

is the average convection coefficient, and 𝑘𝑘

𝑓𝑓

is the fluid thermal conductivity.

Vertical Cylinders: the equations for the Vertical Plate can be applied to vertical cylinders of height L if the following criterion is

met:

𝜋𝜋

𝐿𝐿

35

𝐺𝐺𝑠𝑠

𝐿𝐿

1 / 4

Long Horizontal Cylinders: 𝑁𝑁𝑁𝑁

����

𝜋𝜋

= �0.60 +

  1. 387 𝑅𝑅𝑎𝑎

𝐷𝐷

1 / 6

�1+�

  1. 559

𝑃𝑃𝑟𝑟

9 / 16

8 / 27

2

; 𝑅𝑅𝑎𝑎

𝜋𝜋

≲ 10

12

[Properties evaluated at T

f

]

Spheres: 𝑁𝑁𝑁𝑁

����

𝜋𝜋

= 2 +

  1. 589 𝑅𝑅𝑎𝑎

𝐷𝐷

1 / 4

�1+�

  1. 469

𝑃𝑃𝑟𝑟

9 / 16

4 / 9

; 𝑅𝑅𝑎𝑎

𝜋𝜋

≲ 10

11

; 𝑃𝑃𝑘𝑘 ≥ 0.7 [Properties evaluated at T

f

]

Heat Exchangers

Heat Gain/Loss Equations: 𝑞𝑞 = 𝑚𝑚̇ 𝑐𝑐

𝑝𝑝

𝑐𝑐

𝑖𝑖

𝑠𝑠

𝑙𝑙𝑚𝑚

; where 𝑈𝑈 is the overall heat transfer

coefficient and A

s

is the total heat exchanger surface area

Log-Mean Temperature Difference: ∆𝑇𝑇

𝑙𝑙𝑚𝑚,𝑃𝑃𝑃𝑃

�𝑑𝑑

ℎ,𝑖𝑖

−𝑑𝑑

𝑐𝑐,𝑖𝑖

�−�𝑑𝑑

ℎ,𝑜𝑜

−𝑑𝑑

𝑐𝑐,𝑜𝑜

ln�

�𝑇𝑇

ℎ,𝑖𝑖

−𝑇𝑇

𝑐𝑐,𝑖𝑖

�𝑇𝑇

ℎ,𝑜𝑜

−𝑇𝑇𝑐𝑐

,𝑜𝑜�

[Parallel-Flow Heat Exchanger]

Log-Mean Temperature Difference: ∆𝑇𝑇

𝑙𝑙𝑚𝑚,𝐶𝐶𝑃𝑃

�𝑑𝑑

ℎ,𝑖𝑖

−𝑑𝑑

𝑐𝑐,𝑜𝑜

�−�𝑑𝑑

ℎ,𝑜𝑜

−𝑑𝑑

𝑐𝑐,𝑖𝑖

ln�

�𝑇𝑇

ℎ,𝑖𝑖

−𝑇𝑇𝑐𝑐

,𝑜𝑜�

�𝑇𝑇

ℎ,𝑜𝑜

−𝑇𝑇

𝑐𝑐,𝑖𝑖

[Counter-Flow Heat Exchanger]

For Cross-Flow and Shell-and-Tube Heat Exchangers: ∆𝑇𝑇

𝑙𝑙𝑚𝑚

𝑙𝑙𝑚𝑚,𝐶𝐶𝑃𝑃

; where 𝐹𝐹 is a correction factor

obtained from the figures by calculating P & R values

Effectiveness – NTU Method ( ε – NTU):

Number of Transfer Units (NTU): 𝑁𝑁𝑇𝑇𝑈𝑈 =

𝑈𝑈𝐴𝐴

𝐶𝐶

𝑚𝑚𝑖𝑖𝑚𝑚

; where 𝐶𝐶

𝑚𝑚𝑖𝑖𝑐𝑐

is the minimum heat capacity rate in [W/K]

Heat Capacity Rates: 𝐶𝐶

𝑐𝑐

𝑐𝑐

𝑝𝑝,𝑐𝑐

[Cold Fluid] ; 𝐶𝐶

𝑝𝑝,ℎ

[Hot Fluid]

𝑠𝑠

𝐶𝐶

𝑚𝑚𝑖𝑖𝑚𝑚

𝐶𝐶

𝑚𝑚𝑎𝑎𝑚𝑚

[Heat Capacity Ratio]

Note: The condensation or evaporation side of the heat exchanger is associated with 𝐶𝐶 𝑚𝑚𝑎𝑎𝑥𝑥

𝑐𝑐

𝑝𝑝,𝑐𝑐

𝑐𝑐,𝑐𝑐

𝑐𝑐,𝑖𝑖

𝑝𝑝,ℎ

ℎ,𝑖𝑖

ℎ,𝑐𝑐

𝑠𝑠

𝑙𝑙𝑚𝑚

𝑚𝑚𝑎𝑎𝑥𝑥

𝑚𝑚𝑖𝑖𝑐𝑐

ℎ,𝑖𝑖

𝑐𝑐,𝑖𝑖

� where 𝜀𝜀 =

𝑞𝑞

𝑞𝑞

𝑚𝑚𝑎𝑎𝑚𝑚

Use: 𝜀𝜀 = 𝑓𝑓

𝑠𝑠

relations or 𝑁𝑁𝑇𝑇𝑈𝑈 = 𝑓𝑓

𝑠𝑠

relations as appropriate

  • If Pr ≤ 10 → n = 0.
  • If Pr ≥ 10 → n = 0.