



Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
The concept of probability density and boundary conditions in quantum mechanics. It provides a detailed mathematical analysis of the wave function and its properties, including the relationship between the wave function and the probability density. The document also explores the role of boundary conditions in determining the behavior of the wave function and the associated probability density. Key topics covered include the construction of the probability density equation, the interpretation of the wave function, the significance of boundary conditions, and the verification of the probability conservation. A rigorous and comprehensive treatment of these fundamental concepts in quantum mechanics, making it a valuable resource for students and researchers in the field.
Typology: Assignments
1 / 6
This page cannot be seen from the preview
Don't miss anything!
°') 'J er,t\ 1.\f (~)t) = ce-K't- "i:"'" in. tVLQ. re3ion. wher~
~ ~lep
fo\en..-1c&
J ~ = ~;[1-ir 'ii '1¥)
= !u ~Y-{l(-kc ~ l)-cj21l~~cerl•)]
-a~
~]
= 0 ✓
I.
1
'U.15e il!l C.onse f'IJct\o(
OF prob£Abi\ih.
e.q_ ua
1 on =~ = - - to os9ue
U ot 'cl'X
W~~ fu ~oba, i\i~ co«enb ,afii5h!~ i{t ~ fl/.. (
. Wliio.l ca.n
''R."?
~ b\c. '1\f1\f ~
4wz. Mt>9.U~os oF ¥ (1.)t)) wl,cl-, i~ titile - ,eeen&e~ ,t~,,~)OUt
().Qi of svuce /rk l,OCIO it. c,,~~e w.n tir-e l;.e. :l ( 1\1'1\1' ) = 0) tor ~(l of
e~c...ce. + bk -\Ws is eqoaQ. -to - ~~ ) ,-Ws
M06l l,e, 0. CO~$°tCARl +~roua.io>l
o12.ofS?o.ce
. 4-b\c ~ "l_)cl -r-x.=O)~n"l~o if"X=O SiOc< J"l.f•h>~tbe~~
~12 er 69CICe.
w~ ~ <.
~ b
_ :r .. ~ _ \t..o c'l ( Oo Colfet1\ is)
c. T - a-ioc.
f ~ -1- T -- \ ) ~
1
~iso ~le if Lo\w- ~<o , T>.
J"-,oc '- ;:J.oc
f J _ l~
J°ref
M
rer
.\w, tilYIA.
Jen. ~i&a oF 1kis ?o+ert.\ic& ' ~inO ~ t- T ¼ Verif~ ffo~,ili\o \5 ~sefv~& ! -
F-
tor '({o : ~\J='Jo)
cl'¥ = -~('Jo-E 'lf( ~) \I \ " "'· "
f;'l. -; ,(i
_J{ cf'l\l("()
E'1.\r(~)
~
01"<) c_ __.'X
'l((rx 1 = fi ei'Lo'k.+ ~e~ -x.
~ ,___.......
bouo&~r8 loo&i~io'ls:
1¥L .... ~ ~ ~~ ~ 'lfR)
1f i.. = 'VR ( @ ~ = 0)
l
~Ow~ - (-(~:n
('t-~o)'
{1£.+\Lo)
~ e-°'"6(0) 1" ~? ) -= c ~
)
\ _\i. I_ ~ \t..Jn). - il,.,J,a).
0 "~ ,n- - ~,~oe--·- = ~(.~
ilo(A- B) == ik(c.)
) ·_ i~ (A-+B\
, !.() ~ - ,·~ ~ ·= , '(. Ii + i ~ B
i-u..A. - ,l(.oA =- - (,\l.&-'-i~oB)
~'. - ?- "-~b -+ \i.b '\ ➔ ~ '<..c.o
C
\L'. + d-\L..l.(.o
1
Ft
llL +"-.!>)t
8. \Lo
~ .. 1'..
.( "l ➔ d- '<. tc. 0 'T \t..c, 1
\l" + 'd. "--"- () +~,.
=- '
1 ?ro>Qbili~; ~
Col\se,ve&!
l corn.b H'lj our ~ -+ ~ +A
<ae ~ '.
\ -- f ~ ~e ·,\t..~ ( Cosh. ("c..)
· A A
J
.
\ - ~ = ~ e. ;1tc.. ( c.osk ( w:-) + i ~
a = - ~ e i!C.. \ P-c.osh( ~q.) T i ( t -{) Sin It (t<c.))
_,(,~
~ k'-k1.
C 0.e.
~
A
~ c6slt'(w;.)
*l*
~ ( ,~5il'~ (~)) ➔ \ ~~u.'),nh~(lcc-)
4
4 + 4 'oiatC-te.. ... ( ~~"-')1 Sinh'(1t.~)
-..1.ar