Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

HW 3.0.2: Expand and Condense Logarithms ( ) ( ), Study Guides, Projects, Research of Pre-Calculus

In Exercises 1 – 15, expand the given logarithm and simplify. Assume when necessary that all quantities represent positive real numbers. 1. ln x5 y3.

Typology: Study Guides, Projects, Research

2021/2022

Uploaded on 09/27/2022

albertein
albertein 🇺🇸

4.8

(4)

240 documents

1 / 3

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
HW 3.0.2: Expand and Condense Logarithms
In Exercises 1 – 15, expand the given logarithm and simplify. Assume when necessary that all quantities
represent positive real numbers.
1.
ln x5y3
( )
2.
log3
81
x2+5
3.
log6
x
216
4
4.
log 3.21 ×1041
( )
5.
ln x
3
y z
6.
log8x264
( )
7.
ln(256)
4
8.
9.
ln 81
( )
4
10.
log 39x4
( )
11.
log1
4
16z x 327
( )
( )
12.
log 100y7z10
( )
13.
log 10000 x
3y
1000
5
14.
ln ex
yz
3
15.
log4
1024
xy2
2
pf3

Partial preview of the text

Download HW 3.0.2: Expand and Condense Logarithms ( ) ( ) and more Study Guides, Projects, Research Pre-Calculus in PDF only on Docsity!

HW 3.0.2: Expand and Condense Logarithms

In Exercises 1 – 15, expand the given logarithm and simplify. Assume when necessary that all quantities

represent positive real numbers.

  1. ln x

5 y

3

( ) 2.^ log 3

x

2

  • 5
  1. log 6

x

4

  1. log 3.21 × 10

41

( ) 5.^ ln^

x

3

y z

  1. log 8

x

2

( −^64 )

ln( 256 )

ln ( 64 )

ln ( 81 )

  1. log 3

9 x

4

( ) 11.^ log 1

4

16 z x

3

( ( −^27 )) 12.^ log^100 y

7 z

10

  1. log

10000 x

3 y

5

  1. ln

ex

yz

3

  1. log 4

xy

2

2

  1. log 100

4

5 x

2 y

3

  1. log 1

3

9 x

5

y

3 z

3

ln

x

yz

In Exercises 16- 26 , use the properties of logarithms to write the expression as a single logarithm.

19. 3 ln ( y ) + 5 ln ( z ) 20. 2 log

4

( x ) −^ log

4

( y ) −^

log 4

( z ) 21.^ log^ (^10 ) −^ log^ ( 5 )

  1. log 5

( x ) +^

log 5

( y ) −^4 log

5

( z ) 23.^5 ln^ ( z ) −^3 ln^ ( x ) −^7 ln^ ( y ) 24.^

log ( z ) −

log ( y ) +

log ( x )

ln ( x ) +

ln ( y ) −

ln ( z ) 26. 4 − log

3

( z ) 27.^ log^ ( y ) +^4

  1. log 2

x

2 ( ) +^ log 2 (^ x^ −^1 )^ −^4 29.^ log 8 (^ z )^ +^