Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

IB mathematics formula sheet, Cheat Sheet of Mathematics

Formula sheet in which include basic differentiation and integral rules, exponential and logarithmic function, trigonometric function and quadratic formula.

Typology: Cheat Sheet

2021/2022

Uploaded on 02/07/2022

shanti_122
shanti_122 🇺🇸

3.9

(16)

231 documents

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Mathematics 31 / 31 IB Formula Sheet
BASIC DIFFERENTIATION RULES
First Principles: If ()
y
fx then 0
()()
() lim
h
dy f x h f x
or f x
dx h
Power Rule: If n
xy then 1nn
d
x
nx
dx


Constant Rule: If ky then 0
][
dx
kd
Product Rule: If
v
uy then

ddvdu
uv u v
dx dx dx

Quotient Rule: If
v
u
y then 2
du dv
vu
du dx dx
dx v v




Chain Rule: If (),ygu where ()ufx then dy dy du
dx du dx

EXPONENTIAL & LOGARITHMIC FUNCTIONS
dx
du
ee
dx
duu
dx
du
bbb
dx
duu ln
dx
du
u
u
dx
d 1
ln 1
log ln
b
ddu
u
dx u b dx
TRIGONOMETRIC FUNCTIONS
dx
du
uu
dx
d cossin
dx
du
uuu
dx
d cotcsccsc
dx
du
uu
dx
d sincos .
dx
du
uuu
dx
d tansecsec
dx
du
uu
dx
d 2
sectan
dx
du
uu
dx
d 2
csccot
BASIC INTEGRATION RULES
Ckxdxk
1,
1
1
nC
n
x
dxx
n
n
1,
)1(
)(
)( 1
nC
na
bax
dxbax
n
n
CxwritexIf
xCxdx
x
ln0
0,ln
1
Cedxe xx
Cxdxx sincos
Cxdxx cossin
Cxdxx tansec2
Cxdxx cotcsc2
Cxdxxx sectansec
Cxdxxx csccotcsc
)1(
ln aC
a
a
dxa
x
x
pf2

Partial preview of the text

Download IB mathematics formula sheet and more Cheat Sheet Mathematics in PDF only on Docsity!

Mathematics 31 / 31 IB Formula Sheet

BASIC DIFFERENTIATION RULES

First Principles:

If

y^

f^ x

then

)^

( )^

lim^ h

dy^

f^ x^

h^

f^ x

or^

f^ x dx^

h 

^

^

Power Rule:

If^

nx y^ ^

then

1 n^

n

d^ x

n x dx

 ^  ^ 

Constant Rule:

If

k y^ ^

then

][ kd dx

Product Rule:

If^

vu y^

then

d^ ^ 

dv^

du

uv^

u^

v

dx^

dx^

dx

^ 

^

Quotient Rule:

If

u v y^ ^

then

2 du^

dv

v^

u

d^

u^

dx^

dx

dx^

v^

v ^

^

^ 

^ ^ 

Chain Rule:

If^

y^

g u

where

u^

f^ x

then

dy dy

du dx^

du^

dx ^

EXPONENTIAL & LOGARITHMIC FUNCTIONS due^ dx d^ edx

u u^

^

dubdx b d^ bdx

u u^

^

ln

du^ dxu u d^ dx

ln^

log^

ln b d^

du u dx^

u^

b^ dx ^

TRIGONOMETRIC FUNCTIONS duu^ dx u d^ dx

^ cos sin^

duudx u u d^ dx

cot csc csc

duu^ dx

u d^ dx

 sin cos^

.

duu dx u u d^ dx

^

tan sec sec

duu^ dx

u d^ dx

^

(^2) sec tan^

duudx

u d^ dx

(^2) csc

cot

BASIC INTEGRATION RULES^ ^

^

C

kx dxk

^

n C x n dxx

n

n 

1

n C bax na dxb ax

n

n

Cx writex If

x Cx

dxx

 

^

ln 0

ln

^

C

e dxe

x

x 

^

Cx

dxx

sin

cos 

^

Cx

dxx

cos

sin 

^

Cx

dxx

tan

2 sec 

^

Cx

dxx

cot

2 csc 

^

Cx

dxx x^

sec

tan

sec 

^

Cx

dxx x^

csc

cot

csc 

^

ln^

a C a a dxa

x x

QUADRATIC FORMULA If^

2

ax^

bx^

c ^

^ 

,^

then

2 4

,^

b^

b^

ac

x^

a a ^ 

^

COORDINATE GEOMETRY For two points:

(^

y^11 x^

and^

,( yx 22

:

distance

^

(^22) 1 (^22) 1

(^

y y x x d^

slope

^

2

1 2

1 y^

y m^

x^  x ^

Equation of a line

:^

b mx y^

(^

1

1

xx m y y^

LIMITS OF TRIGONOMETRIC FUNCTIONS

sinlim (^0)

x

x x 

^

cos lim^0

^ 

^

x x x

GEOMETRIC SERIES andLOGARITHMIC FUNCTIONS^1

(^ 

^

ra r S

n n^

,^

a r S^

^ ^1

,^

(^1) r a x a b^

b

x^

log  

a b a

c c b^

loglog log^

log^

log^

log

b^

b^

b

xy^

x^

y

^

log^

log^

log

b^

b^

b

x^

x^

y

^  y

^ ^ 

log^

log nb

b x^

n^

x ^ bx x^ eb

ln 

x

x b

bb x b^

log

log^

 TRIGONOMETRY

Sine Law

:^

c C b B a A

sin sin sin^

Cosine Law:

A

bc c b a^

cos 22 2 2

bc

a c b A^

cos

2 2 2

GEOMETRIC FORMULAS

Triangle

:^

bh A^

Rectangle:

lw A^ 

Circle:

(^2) r A

r C

Sphere:

3 4 r 3 V

2 4 r SA

Cone:

hr V^

2

1 ^3

Cylinder:

hr V^

rh r SA

^

TRIGONOMETRIC IDENTITIES

cos sin^

2 2

^

^

2 2

sec tan 1

^

2 2

csc cot 1

^

cos sin 2 (^2) sin 

^

2 2

sin cos 2 cos^

^

(^2) sin (^21) 2 cos^

cos 2 2 cos^